材料科学
热导率
聚丙烯酸
氮化硼
聚乙二醇
热能储存
化学工程
复合材料
纳米技术
聚合物
热力学
物理
工程类
作者
Hong Cao,Yuan Li,Weidi Xu,Jie Yang,Zheng‐Ying Liu,Lu Bai,Wei Yang,Mingbo Yang
标识
DOI:10.1021/acsami.2c15602
摘要
Phase change materials (PCMs) as one of the most potential latent heat storage techniques have been widely used for thermal management and energy storage. However, simultaneously imparting flexibility, high thermal conductivity, and considerable energy storage density to organic PCMs remains challenging. In this work, a coupling strategy combining substance exchange and magnetic orientation has been proposed to fabricate phase change gels (PCGs) with thermally induced flexibility and high through-plane thermal conductivity. In the PCGs, synthesized boron nitride/ferroferric oxide (BN@Fe3O4) particles and polyacrylic acid (PAA) precursor liquid are introduced to polyethylene glycol (PEG) aqueous solution, and a magnetic field is applied in the process of PAA network construction to promote ordered arrangement of BN@Fe3O4 along the direction of the magnetic field. Consequently, PEG is wrapped by the cross-linked PAA supporting network, forming PCGs with excellent shape stability and thermally induced flexibility. The vertical orientation structure of BN@Fe3O4 endows the PCGs with an enhanced through-plane thermal conductivity of up to 1.07 W m-1 K-1 at a BN@Fe3O4 loading of 25.6 wt % with an additional enhancement of 215% compared to the composite without BN. The thermally conductive leakage-proof PCGs present great application potential in heat storage and management.
科研通智能强力驱动
Strongly Powered by AbleSci AI