Mechanism Analysis of Shale Gas Adsorption under Carbon Dioxide–Moisture Conditions: A Molecular Dynamic Study

吸附 干酪根 甲烷 油页岩 化学 二氧化碳 解吸 化学物理 碳纤维 水分 范德瓦尔斯力 化学工程 分子 热力学 材料科学 有机化学 烃源岩 地质学 复合材料 古生物学 工程类 物理 构造盆地 复合数
作者
Jie Liu,Tao Zhang,Shuyu Sun
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:36 (24): 14865-14873 被引量:13
标识
DOI:10.1021/acs.energyfuels.2c03244
摘要

In recent decades, shale gas, which has been regarded as a source of clean energy, is gradually replacing conventional energy. Shale gas adsorption in carbon dioxide (CO2)–moisture systems has been discussed in many previous studies; however, the intrinsic mechanism has not been clarified yet. In this work, the molecular dynamic (MD) method is adopted to study the adsorption behaviors of shale gas adsorption in the realistic kerogen nanoslit. The spatial density distributions of shale gas and different components have strong inhomogeneity. To reveal the heterogeneous adsorption mechanism, the potential of mean force (PMF) distributions of shale gas components are calculated on different target positions for the first time. The water (H2O) component prefers to adsorb on the oxygen-enriched position, as a result of the strong molecular polarity and hydrogen bond interactions. The CO2 component tends to adsorb on the carbon-rich site, which is the result of combining the van der Waals interaction and molecular polarity with kerogen walls. The potential energy contours are computed to verify the affinities between different components and the kerogen surface, and the potential energy difference can be observed between the bulk phase and adsorbed phase, which corresponds to the density and PMF analyses. The sensitivity analysis is also carried out to verify the above mechanism explanation. Higher temperature facilitates the desorption of shale gas, and higher pressure leads to more adsorption quantity. In the larger pore space, because of more content of H2O and CO2 molecules, the adsorption amount of methane (CH4) decreases. More content of CO2 is conducive to the desorption of shale gas, verified by cases in various component proportions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助可耐的乐荷采纳,获得10
1秒前
Mississippiecho完成签到,获得积分10
2秒前
scdd完成签到 ,获得积分10
2秒前
Gakay发布了新的文献求助10
2秒前
汉库克完成签到,获得积分10
3秒前
bob完成签到,获得积分20
5秒前
充电宝应助欢喜的天空采纳,获得10
5秒前
诚心八宝粥完成签到,获得积分10
6秒前
彤酱完成签到 ,获得积分10
10秒前
大模型应助916采纳,获得10
10秒前
天真豪完成签到 ,获得积分10
11秒前
12秒前
13秒前
搞科研的静静完成签到,获得积分10
15秒前
归尘应助ellieou采纳,获得20
17秒前
xbb88发布了新的文献求助10
18秒前
19秒前
19秒前
21秒前
22秒前
xbb88完成签到,获得积分10
23秒前
23秒前
艾利克斯发布了新的文献求助10
24秒前
24秒前
24秒前
传奇3应助zz采纳,获得10
25秒前
曹能豪完成签到,获得积分10
25秒前
可耐的乐荷完成签到,获得积分10
32秒前
完美世界应助916采纳,获得10
32秒前
dennisysz发布了新的文献求助10
33秒前
36秒前
辞忧完成签到,获得积分10
36秒前
36秒前
liuzengzhang666完成签到,获得积分10
37秒前
安静一曲完成签到 ,获得积分10
39秒前
melody发布了新的文献求助10
39秒前
40秒前
41秒前
wlei发布了新的文献求助10
42秒前
有魅力的乐珍完成签到 ,获得积分10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777429
求助须知:如何正确求助?哪些是违规求助? 3322775
关于积分的说明 10211653
捐赠科研通 3038155
什么是DOI,文献DOI怎么找? 1667159
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103