Intelligent Bearing Fault Diagnosis Based on Open Set Convolutional Neural Network

卷积神经网络 计算机科学 断层(地质) 故障检测与隔离 分类器(UML) 数据挖掘 集合(抽象数据类型) 人工智能 试验装置 断层模型 人工神经网络 模式识别(心理学) 工程类 电气工程 地震学 电子线路 程序设计语言 地质学 执行机构
作者
Bo Zhang,Caicai Zhou,Wei Li,Shengfei Ji,Hengrui Li,Zhe Tong,See-Kiong Ng
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:10 (21): 3953-3953 被引量:9
标识
DOI:10.3390/math10213953
摘要

Traditional data-driven intelligent fault diagnosis methods have been successfully developed under the closed set assumption (CSA). CSA-based fault diagnosis assumes that the fault types in the test set are consistent with that in the training set, which can achieve high accuracy, but this is generally not valid in real-world industrial applications where the collection of data in industrial applications is often limited. As it is unrealistic to assume that the training set will cover all fault types, the application of the fault classifier may fail when the test set contains unknown fault types because the probability of input samples belonging to unknown types cannot be obtained. To solve the problem of how unknown fault types may be accurately identified, this paper further studies the open set assumption (OSA) fault diagnosis. We propose an open set convolutional neural network (OS-CNN) method and apply our OS-CNN model to an improved OpenMax method as a deep network to accurately detect unknown fault types. The overall performance was significantly improved as our OS-CNN model was able to effectively tighten the boundary of known classes and limit the open-space risk for the OpenMax method based on distance modeling. The overall effectiveness of the proposed method was verified by experimental studies based on four different bearing datasets. Compared with state-of-the-art OSA fault diagnosis method, our method cannot only realize the correct classification of the known fault classes, but it can also accurately detect the unknown fault classes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
踏雪飞鸿发布了新的文献求助10
2秒前
chenwei完成签到,获得积分10
7秒前
longh完成签到,获得积分10
7秒前
11秒前
几携完成签到 ,获得积分10
11秒前
小天发布了新的文献求助10
15秒前
刘星完成签到 ,获得积分10
16秒前
火星上的枕头完成签到 ,获得积分10
16秒前
缥缈盼旋完成签到,获得积分10
17秒前
搜集达人应助ruru采纳,获得30
17秒前
19秒前
shenzhou9完成签到,获得积分10
21秒前
复杂访冬完成签到 ,获得积分10
23秒前
sci大户发布了新的文献求助10
23秒前
xiaowuge完成签到 ,获得积分10
25秒前
甜美不评完成签到,获得积分10
26秒前
27秒前
TMUEH_FCL应助阁下宛歆采纳,获得10
29秒前
善良的白昼完成签到,获得积分10
30秒前
汉堡包应助HiNDT采纳,获得10
32秒前
32秒前
34秒前
34秒前
Gogoal完成签到,获得积分10
35秒前
36秒前
37秒前
晨雾完成签到 ,获得积分10
38秒前
JingyuHuang发布了新的文献求助10
40秒前
天雨流芳发布了新的文献求助20
41秒前
zhou完成签到,获得积分10
42秒前
42秒前
LC完成签到 ,获得积分10
46秒前
岁晚发布了新的文献求助10
48秒前
49秒前
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780394
求助须知:如何正确求助?哪些是违规求助? 3325781
关于积分的说明 10224254
捐赠科研通 3040879
什么是DOI,文献DOI怎么找? 1669087
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649