Exploring modality-shared appearance features and modality-invariant relation features for cross-modality person Re-IDentification

模态(人机交互) 判别式 人工智能 不变(物理) 计算机科学 模式识别(心理学) 特征(语言学) 卷积神经网络 计算机视觉 数学 数学物理 语言学 哲学
作者
Nianchang Huang,Jianan Liu,Yongjiang Luo,Qiang Zhang,Jungong Han
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:135: 109145-109145 被引量:42
标识
DOI:10.1016/j.patcog.2022.109145
摘要

• Using the modality-shared and modality-invariant features for cross-modality Re-ID. • Designing a new model to extract modality-shared and modality-invariant features. • Introducing a new loss to further decrease cross-modality variations. Most existing cross-modality person Re-IDentification works rely on discriminative modality-shared features for reducing cross-modality variations and intra-modality variations. Despite their preliminary success, such modality-shared appearance features cannot capture enough modality-invariant discriminative information due to a massive discrepancy between RGB and IR images. To address this issue, on top of appearance features, we further capture the modality-invariant relations among different person parts (referred to as modality-invariant relation features), which help to identify persons with similar appearances but different body shapes. To this end, a Multi-level Two-streamed Modality-shared Feature Extraction (MTMFE) sub-network is designed, where the modality-shared appearance features and modality-invariant relation features are first extracted in a shared 2D feature space and a shared 3D feature space, respectively. The two features are then fused into the final modality-shared features such that both cross-modality variations and intra-modality variations can be reduced. Besides, a novel cross-modality center alignment loss is proposed to further reduce the cross-modality variations. Experimental results on several benchmark datasets demonstrate that our proposed method exceeds state-of-the-art algorithms by a wide margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
aldehyde应助刘人英采纳,获得10
刚刚
雾失楼台发布了新的文献求助10
刚刚
热心萤发布了新的文献求助30
1秒前
1秒前
2秒前
annafan应助xiaojian_291采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
生木发布了新的文献求助10
5秒前
aldehyde应助安静的寒风采纳,获得10
5秒前
上官若男应助雾失楼台采纳,获得30
5秒前
科研通AI5应助千a采纳,获得10
6秒前
6秒前
seven发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
无限寄翠完成签到,获得积分20
11秒前
11秒前
zhou应助Murphy采纳,获得10
13秒前
Niu1980发布了新的文献求助10
14秒前
香蕉觅云应助HHH采纳,获得10
14秒前
无限寄翠发布了新的文献求助10
14秒前
15秒前
z_king_d_23发布了新的文献求助10
16秒前
drwang完成签到,获得积分10
16秒前
热心萤完成签到,获得积分20
17秒前
开朗的晋鹏完成签到,获得积分10
18秒前
drwang发布了新的文献求助10
19秒前
tao发布了新的文献求助10
20秒前
22秒前
23秒前
量子星尘发布了新的文献求助10
26秒前
华仔应助zxb采纳,获得10
27秒前
HHH发布了新的文献求助10
27秒前
xiaoxiao晓发布了新的文献求助10
31秒前
爆米花应助z_king_d_23采纳,获得10
32秒前
满意冷荷完成签到,获得积分10
33秒前
39秒前
39秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
The User Experience Team of One (2nd Edition) 600
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881272
求助须知:如何正确求助?哪些是违规求助? 3423709
关于积分的说明 10735518
捐赠科研通 3148649
什么是DOI,文献DOI怎么找? 1737298
邀请新用户注册赠送积分活动 838799
科研通“疑难数据库(出版商)”最低求助积分说明 784087