已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning for predicting battery capacity for electric vehicles

电池(电) 机器学习 噪音(视频) 均方误差 平均绝对百分比误差 特征(语言学) 计算机科学 人工智能 统计 人工神经网络 数学 物理 图像(数学) 哲学 语言学 功率(物理) 量子力学
作者
Jingyuan Zhao,Heping Ling,Jin Liu,Junbin Wang,Andrew Burke,Yubo Lian
出处
期刊:eTransportation [Elsevier BV]
卷期号:15: 100214-100214 被引量:108
标识
DOI:10.1016/j.etran.2022.100214
摘要

Predicting the evolution of multiphysics battery systems face severe challenges, including various aging mechanisms, cell-to-cell variation and dynamic operating conditions. Despite significant progress, solving real-life battery problems with noisy and missing data and high-dimensional parameter space are either difficult or impossible. In this paper, we design and evaluate feature-based machine learning techniques for estimating the capacity of large format LiFePO4 batteries in EV applications and hence predicting the trajectory of capacity fade based on the estimations. To probe the feature space, we generate a comprehensive dataset consisting of 420 cells and 9 battery packs (178 cells in-series for each one) with more than 10,000 validation data derived from the cloud platform. A two-step noise reduction method is applied to de-noise the scattered field data (30s sampling interval). Totally, 39 domain features are engineered using the reconstructed segments of battery charging data based on the differential methods (increment capacity and differential voltage), which steer the learning process towards accurate and physically consistent predictions by leveraging the stacking ensemble learning. The stacking, comprised of four base learning models referred to as level-1 predictors and a meta-learner referred to as level-2 predictor applied to combine predictions of base learners with probability distributions using an extended set of meta-level features offers exciting opportunities for better accuracy and improved generalization. Our best models achieve 0.28% mean absolute percentage error (MAPE) and 0.55% root mean squared percent error (RMSPE) for battery capacity estimation. Further, 1.22% average percentage error is achieved in the prediction of remaining useful lifetime (RUL) under different conditions of driving distance (km) and service time (day) by building capacity fade trajectory based on a Bayesian regression. This work highlights the promise of machine learning modelling using domain-specific features for accurate estimation and prediction of real-life battery systems based on field data collection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你能行完成签到,获得积分10
刚刚
打工人发布了新的文献求助10
刚刚
兴奋的雁荷完成签到,获得积分20
1秒前
Cat完成签到,获得积分0
1秒前
充电宝应助wh采纳,获得10
2秒前
整齐芷文完成签到,获得积分10
2秒前
Jasper应助mori采纳,获得10
3秒前
如履平川完成签到 ,获得积分10
4秒前
5秒前
7秒前
zfl发布了新的文献求助10
8秒前
11秒前
12秒前
小赵完成签到,获得积分10
12秒前
12秒前
13秒前
积极的夜蕾完成签到,获得积分10
13秒前
Lucas应助jiujiu采纳,获得10
23秒前
药剂机智小仓鼠完成签到 ,获得积分10
23秒前
天涯完成签到 ,获得积分10
25秒前
无辜的猎豹完成签到 ,获得积分10
26秒前
蓝鲸完成签到 ,获得积分10
27秒前
27秒前
负责的归尘完成签到,获得积分10
27秒前
SciGPT应助小城故事和冰雨采纳,获得10
28秒前
科研通AI2S应助妖孽宇采纳,获得10
29秒前
31秒前
善良的剑通应助包远锋采纳,获得10
33秒前
35秒前
负责的凝丹完成签到,获得积分10
36秒前
fafa完成签到 ,获得积分10
36秒前
licrazy发布了新的文献求助10
37秒前
爆炸boom完成签到 ,获得积分10
37秒前
38秒前
妖孽宇完成签到,获得积分10
39秒前
40秒前
40秒前
烟花应助licrazy采纳,获得10
42秒前
妖孽宇发布了新的文献求助10
43秒前
积极的香菇完成签到 ,获得积分10
43秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784640
求助须知:如何正确求助?哪些是违规求助? 3329746
关于积分的说明 10243399
捐赠科研通 3045072
什么是DOI,文献DOI怎么找? 1671592
邀请新用户注册赠送积分活动 800458
科研通“疑难数据库(出版商)”最低求助积分说明 759391