清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Patient‐specific transfer learning for auto‐segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi‐centric evaluation

轮廓 分割 放射治疗计划 卷积神经网络 计算机科学 人工智能 磁共振成像 剂量学 图像分割 前列腺癌 医学 医学物理学 放射治疗 核医学 放射科 癌症 内科学 计算机图形学(图像)
作者
Maria Kawula,Indrawati Hadi,Lukas Nierer,Marica Vagni,Davide Cusumano,Luca Boldrini,Lorenzo Placidi,Stefanie Corradini,Claus Belka,Guillaume Landry,Christopher Kurz
出处
期刊:Medical Physics [Wiley]
卷期号:50 (3): 1573-1585 被引量:40
标识
DOI:10.1002/mp.16056
摘要

Online adaptive radiation therapy (RT) using hybrid magnetic resonance linear accelerators (MR-Linacs) can administer a tailored radiation dose at each treatment fraction. Daily MR imaging followed by organ and target segmentation adjustments allow to capture anatomical changes, improve target volume coverage, and reduce the risk of side effects. The introduction of automatic segmentation techniques could help to further improve the online adaptive workflow by shortening the re-contouring time and reducing intra- and inter-observer variability. In fractionated RT, prior knowledge, such as planning images and manual expert contours, is usually available before irradiation, but not used by current artificial intelligence-based autocontouring approaches.The goal of this study was to train convolutional neural networks (CNNs) for automatic segmentation of bladder, rectum (organs at risk, OARs), and clinical target volume (CTV) for prostate cancer patients treated at 0.35 T MR-Linacs. Furthermore, we tested the CNNs generalization on data from independent facilities and compared them with the MR-Linac treatment planning system (TPS) propagated structures currently used in clinics. Finally, expert planning delineations were utilized for patient- (PS) and facility-specific (FS) transfer learning to improve auto-segmentation of CTV and OARs on fraction images.In this study, data from fractionated treatments at 0.35 T MR-Linacs were leveraged to develop a 3D U-Net-based automatic segmentation. Cohort C1 had 73 planning images and cohort C2 had 19 planning and 240 fraction images. The baseline models (BMs) were trained solely on C1 planning data using 53 MRIs for training and 10 for validation. To assess their accuracy, the models were tested on three data subsets: (i) 10 C1 planning images not used for training, (ii) 19 C2 planning, and (iii) 240 C2 fraction images. BMs also served as a starting point for FS and PS transfer learning, where the planning images from C2 were used for network parameter fine tuning. The segmentation output of the different trained models was compared against expert ground truth by means of geometric metrics. Moreover, a trained physician graded the network segmentations as well as the segmentations propagated by the clinical TPS.The BMs showed dice similarity coefficients (DSC) of 0.88(4) and 0.93(3) for the rectum and the bladder, respectively, independent of the facility. CTV segmentation with the BM was the best for intermediate- and high-risk cancer patients from C1 with DSC=0.84(5) and worst for C2 with DSC=0.74(7). The PS transfer learning brought a significant improvement in the CTV segmentation, yielding DSC=0.72(4) for post-prostatectomy and low-risk patients and DSC=0.88(5) for intermediate- and high-risk patients. The FS training did not improve the segmentation accuracy considerably. The physician's assessment of the TPS-propagated versus network-generated structures showed a clear advantage of the latter.The obtained results showed that the presented segmentation technique has potential to improve automatic segmentation for MR-guided RT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得30
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
巫巫巫巫巫完成签到 ,获得积分10
9秒前
如意2023完成签到 ,获得积分10
13秒前
李大宝完成签到 ,获得积分10
27秒前
43秒前
青水完成签到 ,获得积分10
1分钟前
Gary完成签到 ,获得积分10
1分钟前
南风完成签到 ,获得积分10
1分钟前
xiaofeixia完成签到 ,获得积分10
1分钟前
雪花完成签到 ,获得积分10
1分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
harden9159完成签到,获得积分10
2分钟前
2分钟前
aq22完成签到 ,获得积分10
2分钟前
zijingsy完成签到 ,获得积分10
2分钟前
通科研完成签到 ,获得积分10
2分钟前
蝎子莱莱xth完成签到,获得积分10
2分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
2分钟前
zjq完成签到 ,获得积分10
2分钟前
Square完成签到,获得积分10
2分钟前
3分钟前
执着的寄凡完成签到,获得积分10
3分钟前
无限的含羞草完成签到,获得积分10
4分钟前
包谷冬完成签到 ,获得积分10
4分钟前
马宇航完成签到 ,获得积分10
4分钟前
vitamin完成签到 ,获得积分10
4分钟前
高海龙完成签到 ,获得积分10
4分钟前
善良的剑通完成签到 ,获得积分10
5分钟前
追寻的续完成签到 ,获得积分10
5分钟前
闻巷雨完成签到 ,获得积分10
5分钟前
5分钟前
星辰大海完成签到 ,获得积分10
6分钟前
6分钟前
白昼の月完成签到 ,获得积分0
6分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4048545
求助须知:如何正确求助?哪些是违规求助? 3586209
关于积分的说明 11395477
捐赠科研通 3312940
什么是DOI,文献DOI怎么找? 1822719
邀请新用户注册赠送积分活动 894655
科研通“疑难数据库(出版商)”最低求助积分说明 816458