已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Phantom: Untargeted Poisoning Attacks on Semi-Supervised Learning

计算机科学 成像体模 过程(计算) 人工智能 标记数据 分数(化学) 机器学习 像素 训练集 深度学习 人工神经网络 社会化媒体 图像(数学) 计算机安全 万维网 医学 操作系统 放射科 有机化学 化学
作者
Jonathan Knauer,Phillip Rieger,Hossein Fereidooni,Ahmad‐Reza Sadeghi
标识
DOI:10.1145/3658644.3690369
摘要

Deep Neural Networks (DNNs) can handle increasingly complex tasks, albeit they require rapidly expanding training datasets. Collecting data from platforms with user-generated content, such as social networks, has significantly eased the acquisition of large datasets for training DNNs. Despite these advancements, the manual labeling process remains a substantial challenge in terms of both time and cost. In response, Semi-Supervised Learning (SSL) approaches have emerged, where only a small fraction of the dataset needs to be labeled, leaving the majority unlabeled. However, leveraging data from untrusted sources like social networks also creates new security risks, as potential attackers can easily inject manipulated samples. Previous research on the security of SSL primarily focused on injecting backdoors into trained models, while less attention was given to the more challenging untargeted poisoning attacks. In this paper, we introduce Phantom, the first untargeted poisoning attack in SSL that disrupts the training process by injecting a small number of manipulated images into the unlabeled dataset. Unlike existing attacks, our approach only requires adding few manipulated samples, such as posting images on social networks, without the need to control the victim. Phantom causes SSL algorithms to overlook the actual images' pixels and to rely only on maliciously crafted patterns that \ourname superimposed on the real images. We show Phantom's effectiveness for 6 different datasets and 3 real-world social-media platforms (Facebook, Instagram, Pinterest). Already small fractions of manipulated samples (e.g., 5\%) reduce the accuracy of the resulting model by 10\%, with higher percentages leading to a performance comparable to a naive classifier. Our findings demonstrate the threat of poisoning user-generated content platforms, rendering them unsuitable for SSL in specific tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Eins完成签到 ,获得积分10
刚刚
怕孤独的忆南完成签到,获得积分10
刚刚
Y_RM完成签到 ,获得积分10
1秒前
文渊完成签到,获得积分0
1秒前
2秒前
LanceHayward完成签到 ,获得积分10
2秒前
yetong完成签到 ,获得积分10
2秒前
Milton_z完成签到 ,获得积分0
2秒前
可一可再完成签到 ,获得积分10
3秒前
整齐豆芽完成签到 ,获得积分10
3秒前
alan完成签到 ,获得积分0
3秒前
科研通AI5应助elizabeth339采纳,获得20
3秒前
4秒前
黄123发布了新的文献求助10
4秒前
neocc123完成签到 ,获得积分10
5秒前
Fancy完成签到 ,获得积分10
5秒前
专注的安青完成签到 ,获得积分10
5秒前
烟花应助清新的问枫采纳,获得10
5秒前
小孟吖完成签到 ,获得积分10
5秒前
6秒前
爱听歌的悒完成签到 ,获得积分10
6秒前
糖醋里脊加醋完成签到 ,获得积分10
6秒前
陈雨欣完成签到,获得积分10
6秒前
什么芝士蛋糕完成签到 ,获得积分10
6秒前
唠叨的源智完成签到,获得积分0
6秒前
keep完成签到,获得积分10
7秒前
冰凝完成签到,获得积分10
7秒前
7秒前
lj完成签到 ,获得积分10
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
Alex应助科研通管家采纳,获得20
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得30
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
Ava应助科研通管家采纳,获得10
9秒前
a.s完成签到 ,获得积分0
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944155
求助须知:如何正确求助?哪些是违规求助? 4209234
关于积分的说明 13084869
捐赠科研通 3988718
什么是DOI,文献DOI怎么找? 2183908
邀请新用户注册赠送积分活动 1199291
关于科研通互助平台的介绍 1112119

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10