Integration of Spinal Musculoskeletal System Parameters for Predicting OVCF in the Elderly: A Comprehensive Predictive Model

医学 列线图 逻辑回归 一致性 人口 肌萎缩 物理疗法 核医学 内科学 环境卫生
作者
Song Wang,Xin Zhang,Junyong Zheng,Guoliang Chen,Genlong Jiao,Songlin Peng
出处
期刊:Global Spine Journal [SAGE Publishing]
被引量:1
标识
DOI:10.1177/21925682241274371
摘要

Study Design Systematic literature review. Objectives To develop a predictive model for osteoporotic vertebral compression fractures (OVCF) in the elderly, utilizing current tools that are sensitive to bone and paraspinal muscle changes. Methods A retrospective analysis of data from 260 patients from October 2020 to December 2022, to form the Model population. This group was split into Training and Testing sets. The Training set aided in creating a nomogram through binary logistic regression. From January 2023 to January 2024, we prospectively collected data from 106 patients to constitute the Validation population. The model’s performance was evaluated using concordance index (C-index), calibration curves, and decision curve analysis (DCA) for both internal and external validation. Results The study included 366 patients. The Training and Testing sets were used for nomogram construction and internal validation, while the prospectively collected data was for external validation. Binary logistic regression identified nine independent OVCF risk factors: age, bone mineral density (BMD), quantitative computed tomography (QCT), vertebral bone quality (VBQ), relative functional cross-sectional area of psoas muscles (rFCSA PS ), gross and functional muscle fat infiltration of multifidus and psoas muscles (GMFI ES+MF and FMFI ES+MF ), FMFI PS , and mean muscle ratio. The nomogram showed an area under the curve (AUC) of 0.91 for the C-index, with internal and external validation AUCs of 0.90 and 0.92. Calibration curves and DCA indicated a good model fit. Conclusions This study identified nine factors as independent predictors of OVCF in the elderly. A nomogram including these factors was developed, proving effective for OVCF prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃饼干的土拨鼠完成签到,获得积分10
3秒前
6秒前
6秒前
小松鼠完成签到 ,获得积分10
8秒前
9秒前
11秒前
12秒前
丘比特应助杨冰采纳,获得10
12秒前
菜虚鲲发布了新的文献求助10
12秒前
动漫大师发布了新的文献求助20
12秒前
13秒前
肉脸小鱼发布了新的文献求助10
13秒前
自由的雁完成签到,获得积分10
13秒前
kk完成签到,获得积分10
14秒前
CipherSage应助always采纳,获得10
15秒前
16秒前
小小小新完成签到,获得积分10
16秒前
strug783发布了新的文献求助10
17秒前
小小小新发布了新的文献求助10
19秒前
我是老大应助科研通管家采纳,获得10
19秒前
chenyi应助科研通管家采纳,获得10
19秒前
Akim应助科研通管家采纳,获得10
19秒前
19秒前
六十一完成签到,获得积分10
20秒前
木云浅夏发布了新的文献求助10
22秒前
23秒前
南瓜猪猪头完成签到 ,获得积分10
24秒前
25秒前
25秒前
哈哈完成签到,获得积分10
27秒前
xunlei发布了新的文献求助10
27秒前
科目三应助肉脸小鱼采纳,获得10
28秒前
jianglili发布了新的文献求助10
28秒前
Hello应助小小小新采纳,获得10
29秒前
14发布了新的文献求助10
30秒前
31秒前
33秒前
33秒前
34秒前
绝尘发布了新的文献求助10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780270
求助须知:如何正确求助?哪些是违规求助? 3325566
关于积分的说明 10223524
捐赠科研通 3040706
什么是DOI,文献DOI怎么找? 1668974
邀请新用户注册赠送积分活动 798936
科研通“疑难数据库(出版商)”最低求助积分说明 758634