Toward green container liner shipping: joint optimization of heterogeneous fleet deployment, speed optimization, and fuel bunkering

容器(类型理论) 软件部署 接头(建筑物) 业务 供应链优化 计算机科学 运筹学 汽车工程 运输工程 海洋工程 供应链 工程类 供应链管理 营销 土木工程 机械工程 操作系统
作者
Yuzhe Zhao,Zhongxiu Peng,Jingmiao Zhou,Theo Notteboom,Yiji Ma
出处
期刊:International Transactions in Operational Research [Wiley]
被引量:2
标识
DOI:10.1111/itor.13552
摘要

Abstract Container liner shipping companies, under the international shipping carbon reduction indicators proposed by the International Maritime Organization, must transform two key aspects: technology and operations. This paper defines a green liner shipping problem (GLSP) that integrates the deployment of a heterogeneous fleet, speed determination, and fuel bunkering. The objective is to achieve low‐carbon operations in liner shipping, taking into consideration the diversification of power systems, the use of alternative fuels in ships, and the continuous improvement of alternative fuel bunkering systems. For this purpose, we present a bi‐objective mixed integer nonlinear programming model and develop two methodologies: an epsilon‐constraint approach and a heuristic‐based multi‐objective genetic algorithm. We validate the effectiveness of our model and methods through a case study involving container ships of various sizes deployed on intra‐Asian short sea routes by SITC International Holdings Co., Ltd. The experimental results highlight the crucial role of dual‐fuel (DF) ships in the pursuit of low‐carbon strategies by liner companies, with liquefied natural gas and ammonia DF ships being the most widely used. Additionally, fuel cell (FC) ships, particularly those powered by ammonia and hydrogen, demonstrate significant carbon reduction potential. Furthermore, ships with larger container capacities have a greater cost advantage. For the GLSP, speed determination is an auxiliary decision, and the lowest speed is not necessarily the optimal choice. Decision‐makers must carefully balance competing economic and carbon emission reduction objectives, as deploying more alternative fuel ships may increase fuel bunkering and fuel consumption, resulting in a higher total operating cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助gaint采纳,获得10
刚刚
西梅发布了新的文献求助10
刚刚
CodeCraft应助哈哈采纳,获得10
1秒前
梅卡完成签到 ,获得积分10
3秒前
小蘑菇应助飞云采纳,获得10
3秒前
佳足发布了新的文献求助10
3秒前
自然的晓山完成签到,获得积分10
3秒前
香蕉觅云应助犹豫的世倌采纳,获得10
5秒前
5秒前
科研通AI5应助静静静采纳,获得10
6秒前
ding应助小新采纳,获得10
6秒前
7秒前
麟钰完成签到,获得积分10
7秒前
ccax发布了新的文献求助10
8秒前
djbj2022发布了新的文献求助10
10秒前
哈哈完成签到,获得积分10
10秒前
12秒前
13秒前
14秒前
领导范儿应助小全采纳,获得30
14秒前
14秒前
佳足完成签到,获得积分10
14秒前
15秒前
17秒前
飞云发布了新的文献求助10
18秒前
天天快乐应助美丽的夏柳采纳,获得10
19秒前
张继妖发布了新的文献求助10
20秒前
坦率的怜容完成签到,获得积分10
20秒前
Cc完成签到 ,获得积分10
22秒前
22秒前
24秒前
冷艳哈密瓜完成签到 ,获得积分10
26秒前
Archy发布了新的文献求助10
26秒前
28秒前
吃饱喝足就睡觉完成签到 ,获得积分10
28秒前
karna发布了新的文献求助10
30秒前
Milktea123发布了新的文献求助10
33秒前
lulu完成签到,获得积分10
33秒前
34秒前
李健的小迷弟应助九儿采纳,获得10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780337
求助须知:如何正确求助?哪些是违规求助? 3325661
关于积分的说明 10223791
捐赠科研通 3040806
什么是DOI,文献DOI怎么找? 1669006
邀请新用户注册赠送积分活动 798963
科研通“疑难数据库(出版商)”最低求助积分说明 758648