Lipid synthesis, triggered by PPARγ T166 dephosphorylation, sustains reparative function of macrophages during tissue repair

脱磷 细胞生物学 功能(生物学) 磷酸化 组织修复 化学 生物 磷酸酶
作者
Shiman Zuo,Yuxin Wang,Hanjing Bao,Zehui Zhang,Nanfei Yang,Jia Meng,Qing Zhang,Ani Jian,Rong Ji,Lidan Zhang,Yan Lü,Yahong Huang,Pingping Shen
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:15 (1) 被引量:5
标识
DOI:10.1038/s41467-024-51736-5
摘要

Macrophages may acquire a reparative phenotype that supports tissue repair and remodeling in response to tissue injury. However, the metabolic requirements underpinning this process are incompletely understood. Here, we show that posttranslational modification (PTM) of PPARγ regulates lipid synthesis in response to wound microenvironmental cues and that metabolic rewiring orchestrates function of reparative macrophages. In injured tissues, repair signaling leads to decreased macrophage PPARγ threonine 166 (T166) phosphorylation, which results in a partially active PPARγ transcriptional program comprised of increased binding activity to the regulator regions of lipid synthesis-associated genes, thereby increased lipogenesis. The accumulated lipids serve as signaling molecules, triggering STAT3-mediated growth factor expression, and supporting the synthesis of phospholipids for the expansion of the endoplasmic reticulum (ER), which is required for protein secretion. Genetic or pharmacological inhibition of PPARγ T166 phosphorylation promotes the reparative function of macrophages and facilitates tissue regeneration. In summary, our work identifies PPARγ T166-regulated lipid biosynthesis as an essential pathway for meeting the anabolic demands of the activation and function of macrophages and provides a rationale for potential therapeutic targeting of tissue repair. Macrophages with a reparative phenotype are important for tissue repair and have distinctive metabolic features. Here authors show that metabolic rewiring of macrophages during wound healing involves dephosphorylation of the transcription factor PPARγ, which results in activation of target genes that regulate lipid biosynthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助drjim采纳,获得10
刚刚
三番发布了新的文献求助10
刚刚
hairgod完成签到,获得积分10
1秒前
1秒前
畅畅发布了新的文献求助10
4秒前
sdgd发布了新的文献求助10
4秒前
5秒前
5秒前
打打应助xiang采纳,获得10
6秒前
vsbsjj应助Chen采纳,获得10
7秒前
无花果应助Axel采纳,获得10
9秒前
Milou发布了新的文献求助10
9秒前
sxw发布了新的文献求助10
10秒前
tian发布了新的文献求助10
12秒前
不开心发布了新的文献求助10
12秒前
源源完成签到,获得积分10
13秒前
川农辅导员完成签到,获得积分10
14秒前
drjim完成签到,获得积分10
16秒前
坐等时光看轻自己完成签到,获得积分10
16秒前
t通应助tian采纳,获得10
19秒前
23秒前
小西完成签到,获得积分10
23秒前
科研民工完成签到,获得积分10
24秒前
xiang发布了新的文献求助10
26秒前
张远幸发布了新的文献求助10
26秒前
华仔应助调皮冰旋采纳,获得10
27秒前
lokia完成签到,获得积分10
28秒前
30秒前
sdgd发布了新的文献求助30
31秒前
小赵完成签到,获得积分10
32秒前
33秒前
35秒前
35秒前
不说话的不倒翁完成签到 ,获得积分10
35秒前
35秒前
三番完成签到,获得积分10
36秒前
精明羊青发布了新的文献求助10
36秒前
cc发布了新的文献求助10
36秒前
LIFE2020完成签到 ,获得积分10
38秒前
April发布了新的文献求助10
40秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Quantum Sensors Market 2025-2045: Technology, Trends, Players, Forecasts 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3914720
求助须知:如何正确求助?哪些是违规求助? 3460058
关于积分的说明 10909325
捐赠科研通 3186721
什么是DOI,文献DOI怎么找? 1761570
邀请新用户注册赠送积分活动 852201
科研通“疑难数据库(出版商)”最低求助积分说明 793213