亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Joint Under-Sampling Pattern and Dual-Domain Reconstruction for Accelerating Multi-Contrast MRI

接头(建筑物) 计算机科学 人工智能 迭代重建 计算机视觉 对比度(视觉) 采样(信号处理) 对偶(语法数字) 模式识别(心理学) 工程类 建筑工程 艺术 文学类 滤波器(信号处理)
作者
Pengcheng Lei,Le Hu,Faming Fang,Guixu Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4686-4701 被引量:1
标识
DOI:10.1109/tip.2024.3445729
摘要

Multi-Contrast Magnetic Resonance Imaging (MCMRI) utilizes the short-time reference image to facilitate the reconstruction of the long-time target one, providing a new solution for fast MRI. Although various methods have been proposed, they still have certain limitations. 1) existing methods featuring the preset under-sampling patterns give rise to redundancy between multi-contrast images and limit their model performance; 2) most methods focus on the information in the image domain, prior knowledge in the k-space domain has not been fully explored; and 3) most networks are manually designed and lack certain physical interpretability. To address these issues, we propose a joint optimization of the under-sampling pattern and a deep-unfolding dual-domain network for accelerating MCMRI. Firstly, to reduce the redundant information and sample more contrast-specific information, we propose a new framework to learn the optimal under-sampling pattern for MCMRI. Secondly, a dual-domain model is established to reconstruct the target image in both the image domain and the k-space frequency domain. The model in the image domain introduces a spatial transformation to explicitly model the inconsistent and unaligned structures of MCMRI. The model in the k-space learns prior knowledge from the frequency domain, enabling the model to capture more global information from the input images. Thirdly, we employ the proximal gradient algorithm to optimize the proposed model and then unfold the iterative results into a deep-unfolding network, called MC-DuDoN. We evaluate the proposed MC-DuDoN on MCMRI super-resolution and reconstruction tasks. Experimental results give credence to the superiority of the current model. In particular, since our approach explicitly models the inconsistent structures, it shows robustness on spatially misaligned MCMRI. In the reconstruction task, compared with conventional masks, the learned mask restores more realistic images, even under an ultra-high acceleration ratio ( ×30 ). Code is available at https://github.com/lpcccc-cv/MC-DuDoNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花521完成签到,获得积分10
13秒前
18秒前
英俊小鼠发布了新的文献求助10
24秒前
番茄黄瓜芝士片完成签到 ,获得积分10
30秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
久而久之发布了新的文献求助10
2分钟前
传奇完成签到 ,获得积分10
3分钟前
3分钟前
幽默酸奶发布了新的文献求助10
3分钟前
3分钟前
3分钟前
幽默酸奶完成签到 ,获得积分10
4分钟前
动人的白凡完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得30
4分钟前
14999应助科研通管家采纳,获得10
4分钟前
nenoaowu应助科研通管家采纳,获得30
4分钟前
nenoaowu应助科研通管家采纳,获得30
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
TORCH完成签到 ,获得积分10
5分钟前
休斯顿完成签到,获得积分10
5分钟前
自律完成签到,获得积分10
5分钟前
5分钟前
6分钟前
crane完成签到,获得积分10
6分钟前
6分钟前
Adhklu完成签到 ,获得积分10
6分钟前
zxy完成签到 ,获得积分10
6分钟前
nenoaowu应助科研通管家采纳,获得30
6分钟前
7分钟前
7分钟前
江三村完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Impact of water dispenser establishment on drinking water availability and health status of peri-urban community 560
Implantable Technologies 500
Theories of Human Development 400
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3919948
求助须知:如何正确求助?哪些是违规求助? 3464948
关于积分的说明 10935414
捐赠科研通 3193263
什么是DOI,文献DOI怎么找? 1764548
邀请新用户注册赠送积分活动 854963
科研通“疑难数据库(出版商)”最低求助积分说明 794528