SelfGCN: Graph Convolution Network with Self-Attention for Skeleton-based Action Recognition

计算机科学 RGB颜色模型 动作识别 卷积(计算机科学) 人工智能 地点 模式识别(心理学) 图形 圆卷积 卷积神经网络 理论计算机科学 数学 人工神经网络 傅里叶变换 班级(哲学) 傅里叶分析 数学分析 语言学 哲学 分数阶傅立叶变换
作者
Zhize Wu,Pengpeng Sun,Xin Chen,Keke Tang,Tong Xu,Le Zou,Xiaofeng Wang,Ming Tan,Fan Cheng,Thomas Weise
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4391-4403
标识
DOI:10.1109/tip.2024.3433581
摘要

Graph Convolutional Networks (GCNs) are widely used for skeleton-based action recognition and achieved remarkable performance. Due to the locality of graph convolution, GCNs can only utilize short-range node dependencies but fail to model long-range node relationships. In addition, existing graph convolution based methods normally use a uniform skeleton topology for all frames, which limits the ability of feature learning. To address these issues, we present the Graph Convolution Network with Self-Attention (SelfGCN), which consists of a mixing features across self-attention and graph convolution (MFSG) module and a temporal-specific spatial self-attention (TSSA) module. The MFSG module models local and global relationships between joints by executing graph convolution and self-attention branches in parallel. Its bi-directional interactive learning strategy utilizes complementary clues in the channel dimensions and the spatial dimensions across both of these branches. The TSSA module uses self-attention to learn the spatial relationships between joints of each frame in a skeleton sequence. It also models the unique spatial features of the single frames. We conduct extensive experiments on three popular benchmark datasets, NTU RGB+D, NTU RGB+D120, and Northwestern-UCLA. The results of the experiment demonstrate that our method achieves or exceeds the record accuracies on all three benchmarks. Our project website is available at https://github.com/SunPengP/SelfGCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大橙子完成签到,获得积分10
2秒前
2秒前
2秒前
冬aa完成签到 ,获得积分10
7秒前
8秒前
melody发布了新的文献求助10
8秒前
章章发布了新的文献求助10
8秒前
13秒前
Whassupww完成签到,获得积分10
14秒前
崔尔蓉完成签到,获得积分10
17秒前
liuhe发布了新的文献求助10
18秒前
paleo-地质完成签到,获得积分10
22秒前
Ningxin完成签到,获得积分10
22秒前
英俊延恶完成签到,获得积分10
23秒前
kai chen完成签到 ,获得积分0
27秒前
wangjius完成签到,获得积分10
27秒前
西瓜霜完成签到 ,获得积分10
28秒前
利奈唑胺完成签到,获得积分10
28秒前
科研通AI5应助务实的又柔采纳,获得10
28秒前
29秒前
平淡纸飞机完成签到 ,获得积分10
29秒前
xx应助科研通管家采纳,获得10
32秒前
英姑应助科研通管家采纳,获得10
32秒前
orixero应助科研通管家采纳,获得10
32秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
香蕉觅云应助科研通管家采纳,获得10
32秒前
爆米花应助科研通管家采纳,获得10
32秒前
Lin应助科研通管家采纳,获得10
32秒前
韩野完成签到,获得积分10
32秒前
小蘑菇应助科研通管家采纳,获得50
32秒前
Lucas应助科研通管家采纳,获得10
33秒前
英姑应助科研通管家采纳,获得10
33秒前
上官若男应助科研通管家采纳,获得10
33秒前
李健应助科研通管家采纳,获得10
33秒前
冰魂应助科研通管家采纳,获得10
33秒前
科研通AI5应助科研通管家采纳,获得50
33秒前
Hello应助科研通管家采纳,获得10
33秒前
小蘑菇应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777767
求助须知:如何正确求助?哪些是违规求助? 3323293
关于积分的说明 10213450
捐赠科研通 3038542
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798152
科研通“疑难数据库(出版商)”最低求助积分说明 758275