计算机科学
RGB颜色模型
动作识别
卷积(计算机科学)
人工智能
地点
模式识别(心理学)
图形
圆卷积
卷积神经网络
理论计算机科学
数学
人工神经网络
傅里叶变换
班级(哲学)
傅里叶分析
数学分析
语言学
哲学
分数阶傅立叶变换
作者
Zhize Wu,Pengpeng Sun,Xin Chen,Keke Tang,Tong Xu,Le Zou,Xiaofeng Wang,Ming Tan,Fan Cheng,Thomas Weise
标识
DOI:10.1109/tip.2024.3433581
摘要
Graph Convolutional Networks (GCNs) are widely used for skeleton-based action recognition and achieved remarkable performance. Due to the locality of graph convolution, GCNs can only utilize short-range node dependencies but fail to model long-range node relationships. In addition, existing graph convolution based methods normally use a uniform skeleton topology for all frames, which limits the ability of feature learning. To address these issues, we present the Graph Convolution Network with Self-Attention (SelfGCN), which consists of a mixing features across self-attention and graph convolution (MFSG) module and a temporal-specific spatial self-attention (TSSA) module. The MFSG module models local and global relationships between joints by executing graph convolution and self-attention branches in parallel. Its bi-directional interactive learning strategy utilizes complementary clues in the channel dimensions and the spatial dimensions across both of these branches. The TSSA module uses self-attention to learn the spatial relationships between joints of each frame in a skeleton sequence. It also models the unique spatial features of the single frames. We conduct extensive experiments on three popular benchmark datasets, NTU RGB+D, NTU RGB+D120, and Northwestern-UCLA. The results of the experiment demonstrate that our method achieves or exceeds the record accuracies on all three benchmarks. Our project website is available at https://github.com/SunPengP/SelfGCN.
科研通智能强力驱动
Strongly Powered by AbleSci AI