The impact of high-order features on performance of radiomics studies in CT non-small cell lung cancer

无线电技术 特征选择 医学 人工智能 机器学习 特征(语言学) 选择(遗传算法) 订单(交换) 计算机科学 模式识别(心理学) 哲学 语言学 财务 经济
作者
Gary Ge,Jason Z. Zhang,Jie Zhang
出处
期刊:Clinical Imaging [Elsevier BV]
卷期号:113: 110244-110244 被引量:2
标识
DOI:10.1016/j.clinimag.2024.110244
摘要

High-order radiomic features have been shown to produce high performance models in a variety of scenarios. However, models trained without high-order features have shown similar performance, raising the question of whether high-order features are worth including given their increased computational burden. This comparative study investigates the impact of high-order features on model performance in CT-based Non-Small Cell Lung Cancer (NSCLC) and the potential uncertainty regarding their application in machine learning. Three categories of features were retrospectively retrieved from CT images of 347 NSCLC patients: first- and second-order statistical features, morphological features and transform (high-order) features. From these, three datasets were constructed: a "low-order" dataset (Lo) which included the first-order, second-order, and morphological features, a high-order dataset (Hi), and a combined dataset (Combo). A diverse selection of datasets, feature selection methods, and predictive models were included for the uncertainty analysis, with two-year survival as the study endpoint. AUC values were calculated for comparisons and Kruskal-Wallis testing was performed to determine significant differences. The Hi (AUC: 0.41-0.62) and Combo (AUC: 0.41-0.62) datasets generate significantly (P < 0.01) higher model performance than the Lo dataset (AUC: 0.42-0.58). High-order features are selected more often than low-order features for model training, comprising 87 % of selected features in the Combo dataset. High-order features are a source of data that can improve machine learning model performance. However, its impact strongly depends on various factors that may lead to inconsistent results. A clear approach to incorporate high-order features in radiomic studies requires further investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助Adalwolf采纳,获得10
2秒前
脑洞疼应助丁天盈采纳,获得10
3秒前
快乐小子发布了新的文献求助10
4秒前
4秒前
6秒前
qq发布了新的文献求助30
6秒前
缥缈羿完成签到,获得积分10
7秒前
Maria完成签到,获得积分10
7秒前
7秒前
快乐的海亦完成签到,获得积分10
8秒前
sonnet发布了新的文献求助10
8秒前
10秒前
河羊羊完成签到,获得积分10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
丘比特应助粗心的寒烟采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
14秒前
14秒前
科研通AI6应助快乐的海亦采纳,获得10
15秒前
weidingge2011发布了新的文献求助10
16秒前
zzz完成签到,获得积分10
17秒前
丁天盈发布了新的文献求助10
19秒前
阿宝发布了新的文献求助10
20秒前
Sukie发布了新的文献求助10
20秒前
xzf发布了新的文献求助10
20秒前
麻麻薯完成签到 ,获得积分10
21秒前
bkagyin应助疯狂的冬瓜采纳,获得10
21秒前
21秒前
大模型应助腌柿子采纳,获得10
22秒前
25秒前
HOXXXiii完成签到,获得积分10
25秒前
WIND-CUTTER发布了新的文献求助10
25秒前
25秒前
26秒前
28秒前
29秒前
KYG发布了新的文献求助10
30秒前
huifang完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4746475
求助须知:如何正确求助?哪些是违规求助? 4094160
关于积分的说明 12666384
捐赠科研通 3805952
什么是DOI,文献DOI怎么找? 2101235
邀请新用户注册赠送积分活动 1126578
关于科研通互助平台的介绍 1003082