Chitin Exfoliation Nanoengineering for Enhanced Salinity Gradient Power Conversion

剥脱关节 材料科学 纳米工程 纳米技术 纳米纤维 化学工程 插层(化学) 溶解 化学物理 石墨烯 有机化学 化学 工程类
作者
Ting Huang,Zhijiang Xie,Siqi Liu,Yiwei Li,Jing Zhou,Zhixuan Li,Yi Kong,Dean Shi,Qunchao Zhang,Zhaoyang Wei,Pan Chen,Dongdong Ye,Jun You
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (51) 被引量:4
标识
DOI:10.1002/adfm.202411631
摘要

Abstract Rapid advancements in nano‐exfoliation and dissolution strategies have effectively disassembled hierarchical biomass materials into nanosheets, nanofibers, and even atomic‐scale molecular chains, making them highly applicable in osmotic energy harvesting. However, sub‐nanosheets, situated between molecular chains and nanofibers, remain unexplored due to the demanding nature of their preparation methods. Herein, a pseudosolvent‐driven programmable ion intercalation‐exfoliation strategy is developed that triggers exfoliation along the lowest energy crystal plane (010), as simulations confirm. This method allows for the controlled exfoliation of chitin assemblies ranging from nanofibers to sub‐nanometer sheets and molecular chains. Specifically, compared to nanofibrils, sub‐nanometer sheet interfacial assembly exhibits higher surface charge density and interplanar spacing, leading to a 2.3‐fold increase in ion transport flux while maintaining high‐performance selective ion behavior, as confirmed by both experiments and molecular scale simulations, respectively. These enhancements result in superior ionic conductivity and power conversion performance (8.45 W m −2 ) under a 50‐fold salinity gradient, surpassing commercial standards (5.0 W m −2 ) and other all‐biomass membrane systems (Max. 2.87 W m −2 ). This work provides insights into the controlled exfoliation of biomass at the sub‐nanometer scale and enhancing osmotic energy harvesting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xx完成签到 ,获得积分10
1秒前
星辰大海应助百事从欢采纳,获得10
2秒前
2秒前
3秒前
桐桐应助阿独采纳,获得10
3秒前
所所应助兔子精采纳,获得10
4秒前
懵懂的枫叶完成签到,获得积分10
5秒前
Nexus发布了新的文献求助10
6秒前
背后尔容发布了新的文献求助10
6秒前
6秒前
7秒前
gossie完成签到,获得积分10
8秒前
十六日呀完成签到,获得积分10
8秒前
9秒前
这橘不甜完成签到,获得积分10
11秒前
su发布了新的文献求助10
12秒前
韩凡发布了新的文献求助10
12秒前
12秒前
文艺大炮完成签到,获得积分10
13秒前
14秒前
烟花应助Sera采纳,获得10
15秒前
源源完成签到,获得积分10
15秒前
15秒前
wang发布了新的文献求助10
15秒前
16秒前
16秒前
18秒前
小杭76应助明理丹云采纳,获得10
19秒前
行行行发布了新的文献求助10
20秒前
别急发布了新的文献求助10
21秒前
辛勤金连发布了新的文献求助10
22秒前
农夫果园完成签到,获得积分10
23秒前
汉堡包应助自觉的诺言采纳,获得10
23秒前
何雨航发布了新的文献求助10
24秒前
深情安青应助su采纳,获得10
25秒前
25秒前
25秒前
兔子精给兔子精的求助进行了留言
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299311
求助须知:如何正确求助?哪些是违规求助? 4447519
关于积分的说明 13843004
捐赠科研通 4333113
什么是DOI,文献DOI怎么找? 2378534
邀请新用户注册赠送积分活动 1373842
关于科研通互助平台的介绍 1339360