静载荷
医学
部分各向异性
孟德尔随机化
生命银行
痴呆
白质
混淆
人体测量学
内科学
老年学
疾病
磁共振成像
生物信息学
生物
放射科
生物化学
遗传变异
基因
基因型
作者
Li Feng,Zhenyao Ye,Zewen Du,Yezhi Pan,Travis Canida,Hongjie Ke,Song Liu,Shuo Chen,L. Elliot Hong,Peter Kochunov,Jie Chen,David K.Y. Lei,Edmond D. Shenassa,Tianzhou Ma
摘要
Abstract White matter (WM) brain age, a neuroimaging-derived biomarker indicating WM microstructural changes, helps predict dementia and neurodegenerative disorder risks. The cumulative effect of chronic stress on WM brain aging remains unknown. In this study, we assessed cumulative stress using a multi-system composite allostatic load (AL) index based on inflammatory, anthropometric, respiratory, lipidemia, and glucose metabolism measures, and investigated its association with WM brain age gap (BAG), computed from diffusion tensor imaging data using a machine learning model, among 22 951 European ancestries aged 40 to 69 (51.40% women) from UK Biobank. Linear regression, Mendelian randomization, along with inverse probability weighting and doubly robust methods, were used to evaluate the impact of AL on WM BAG adjusting for age, sex, socioeconomic, and lifestyle behaviors. We found increasing one AL score unit significantly increased WM BAG by 0.29 years in association analysis and by 0.33 years in Mendelian analysis. The age- and sex-stratified analysis showed consistent results among participants 45-54 and 55-64 years old, with no significant sex difference. This study demonstrated that higher chronic stress was significantly associated with accelerated brain aging, highlighting the importance of stress management in reducing dementia and neurodegenerative disease risks.
科研通智能强力驱动
Strongly Powered by AbleSci AI