Innovative Data-Driven Machine Learning Approaches for Predicting Sandstone True Triaxial Strength

地质学 岩土工程
作者
Rui Zhang,Jian Zhou,Zhenyu Wang
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (17): 7855-7855 被引量:1
标识
DOI:10.3390/app14177855
摘要

Given the critical role of true triaxial strength assessment in underground rock and soil engineering design and construction, this study explores sandstone true triaxial strength using data-driven machine learning approaches. Fourteen distinct sandstone true triaxial test datasets were collected from the existing literature and randomly divided into training (70%) and testing (30%) sets. A Multilayer Perceptron (MLP) model was developed with uniaxial compressive strength (UCS, σc), intermediate principal stress (σ2), and minimum principal stress (σ3) as inputs and maximum principal stress (σ1) at failure as the output. The model was optimized using the Harris hawks optimization (HHO) algorithm to fine-tune hyperparameters. By adjusting the model structure and activation function characteristics, the final model was made continuously differentiable, enhancing its potential for numerical analysis applications. Four HHO-MLP models with different activation functions were trained and validated on the training set. Based on the comparison of prediction accuracy and meridian plane analysis, an HHO-MLP model with high predictive accuracy and meridional behavior consistent with theoretical trends was selected. Compared to five traditional strength criteria (Drucker–Prager, Hoek–Brown, Mogi–Coulomb, modified Lade, and modified Weibols–Cook), the optimized HHO-MLP model demonstrated superior predictive performance on both training and testing datasets. It successfully captured the complete strength variation in principal stress space, showing smooth and continuous failure envelopes on the meridian and deviatoric planes. These results underscore the model’s ability to generalize across different stress conditions, highlighting its potential as a powerful tool for predicting the true triaxial strength of sandstone in geotechnical engineering applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
微光应助到旷野上采纳,获得10
2秒前
体贴半仙发布了新的文献求助10
2秒前
甘乐完成签到 ,获得积分10
3秒前
weilian完成签到,获得积分10
3秒前
sprileye完成签到,获得积分20
4秒前
量子星尘发布了新的文献求助10
4秒前
高xuewen发布了新的文献求助10
6秒前
why发布了新的文献求助30
6秒前
wzg666发布了新的文献求助10
7秒前
7秒前
8秒前
李爱国应助小木林采纳,获得10
8秒前
123321321345发布了新的文献求助10
9秒前
9秒前
谨慎流沙发布了新的文献求助10
11秒前
11秒前
灵药发布了新的文献求助10
13秒前
传奇3应助狂野酒窝采纳,获得30
14秒前
花无缺发布了新的文献求助10
15秒前
16秒前
ybdx发布了新的文献求助10
16秒前
17秒前
18秒前
19秒前
Akim应助dr_zhoujielong采纳,获得10
19秒前
念姬发布了新的文献求助10
19秒前
负责的凤发布了新的文献求助10
20秒前
why完成签到,获得积分10
20秒前
余喆完成签到,获得积分10
20秒前
研友_VZG7GZ应助Alano采纳,获得10
20秒前
20秒前
嘿嘿嘿完成签到 ,获得积分10
21秒前
丘比特应助花无缺采纳,获得10
21秒前
21秒前
22秒前
23秒前
24秒前
吐金纳发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548309
求助须知:如何正确求助?哪些是违规求助? 4633619
关于积分的说明 14631930
捐赠科研通 4575228
什么是DOI,文献DOI怎么找? 2508884
邀请新用户注册赠送积分活动 1485127
关于科研通互助平台的介绍 1456139