CALLM: Enhancing Clinical Interview Analysis through Data Augmentation with Large Language Models

计算机科学 自然语言处理 数据科学 人工智能
作者
Yuqi Wu,Kaining Mao,Yanbo Zhang,Jie Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:7
标识
DOI:10.1109/jbhi.2024.3435085
摘要

The global prevalence of mental health disorders is increasing, leading to a significant economic burden estimated in trillions of dollars. In automated mental health diagnosis, the scarcity and imbalance of clinical data pose considerable challenges for researchers, limiting the effectiveness of machine learning algorithms. To cope with this issue, this paper aims to introduce a novel clinical transcript data augmentation framework by leveraging large language models (CALLM). The framework follows a "patient-doctor role-playing" intuition to generate realistic synthetic data. In addition, our study introduces a unique "Textbook-Assignment-Application" (T-A-A) partitioning approach to offer a systematic means of crafting synthetic clinical interview datasets. Concurrently, we have also developed a "Response-Reason" prompt engineering paradigm to generate highly authentic and diagnostically valuable transcripts. By leveraging a fine-tuned DistilBERT model on the E-DAIC PTSD dataset, we achieved a balanced accuracy of 0.77, an F1-score of 0.70, and an AUC of 0.78 during test set evaluations, which showcase robust adaptability in both Zero-Shot Learning (ZSL) and Few-Shot Learning (FSL) scenarios. We further compare the CALLM framework with other data augmentation methods and PTSD diagnostic works and demonstrates consistent improvements. Compared to conventional data collection methods, our synthetic dataset not only demonstrates superior performance but also incurs less than 1% of the associated costs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助BJYX采纳,获得10
刚刚
完美世界应助江山木采纳,获得30
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
852应助Sylwren采纳,获得10
2秒前
3秒前
3秒前
4秒前
4秒前
shadow完成签到,获得积分10
4秒前
浮游应助檀宇亭采纳,获得10
4秒前
4秒前
烟花应助yoshi采纳,获得10
5秒前
5秒前
tuzhihong完成签到,获得积分10
6秒前
科研通AI2S应助simoncai采纳,获得10
6秒前
仲颖发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
小朱发布了新的文献求助10
8秒前
领导范儿应助文静亦玉采纳,获得10
8秒前
8秒前
9秒前
9秒前
torfun发布了新的文献求助10
9秒前
ardejiang发布了新的文献求助10
10秒前
大模型应助一叶知秋采纳,获得10
10秒前
freezing发布了新的文献求助10
11秒前
11秒前
lingjunjie发布了新的文献求助10
11秒前
小歘歘发布了新的文献求助10
11秒前
11秒前
jm完成签到,获得积分10
11秒前
明亮寒安完成签到 ,获得积分10
11秒前
研友_VZG7GZ应助Hank采纳,获得10
12秒前
nbnmbm完成签到,获得积分10
13秒前
ding应助torfun采纳,获得10
13秒前
Jim完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
苯丙氨酸解氨酶的祖先序列重建及其催化性能 700
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4848620
求助须知:如何正确求助?哪些是违规求助? 4148371
关于积分的说明 12849751
捐赠科研通 3895661
什么是DOI,文献DOI怎么找? 2141136
邀请新用户注册赠送积分活动 1160848
关于科研通互助平台的介绍 1060883