Development of an Improved Kinetic Model for CO2 Hydrogenation to Methanol

甲醇 催化作用 动能 热力学 等温过程 化学 动力学 化学计量学 材料科学 物理化学 有机化学 物理 量子力学
作者
Siphesihle Mbatha,Sébastien Thomas,Ksenia Parkhomenko,Anne‐Cécile Roger,Benoît Louis,Xiaoti Cui,Raymond C. Everson,Henrietta W. Langmi,Nicholas M. Musyoka,Jianwei Ren
出处
期刊:Catalysts [Multidisciplinary Digital Publishing Institute]
卷期号:13 (10): 1349-1349 被引量:3
标识
DOI:10.3390/catal13101349
摘要

The kinetics of methanol synthesis remains debatable for various reasons, such as the lack of scientifically conclusive agreement about reaction mechanisms. The focus of this paper is on the evaluation of the intrinsic kinetics of the methanol synthesis reaction based on CO2 hydrogenation and the associated reverse water–gas shift as overall reactions. The industrial methanol synthesis catalyst, Cu/ZnO/Al2O3/MgO, was used for performing the kinetic studies. An optimal kinetic model was assessed for its ability to predict the experimental data from differential to integral conditions, contrary to the typical fitting of only the integral conditions’ data (common practice, as reported in the literature). The catalyst testing and kinetic evaluations were performed at various temperatures (210–260 °C) and pressures (40–77 bar), and for different stoichiometric numbers (0.9–1.9), H2/CO2 ratios (3.0–4.4) and carbon oxide ratios (0.9–1.0), in an isothermal fixed bed reactor, operated in a plug-flow mode. Experiments with CO in the feed were also generated and fitted. Different literature kinetic models with different assumptions on active sites, rate-determining steps, and hence, model formulations were fitted and compared. The original Seidel model appeared to fit the kinetic data very well, but it has twelve parameters. The modified model (MOD) we propose is derived from this Seidel model, but it has fewer (nine) parameters—it excludes CO hydrogenation, but it takes into consideration the morphological changes of active sites and CO adsorption. This MOD model, with three active sites, gave the best fit to all the data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李咸咸123完成签到,获得积分10
刚刚
1秒前
怡然的乘风完成签到 ,获得积分10
1秒前
小小小完成签到,获得积分10
1秒前
CHANG完成签到 ,获得积分10
1秒前
芥末章鱼发布了新的文献求助10
1秒前
是否跨凤乘龙完成签到,获得积分10
2秒前
fff完成签到,获得积分10
2秒前
木头完成签到,获得积分10
2秒前
Liangc333发布了新的文献求助10
3秒前
3秒前
务实的以松完成签到,获得积分10
3秒前
勤奋大地完成签到,获得积分10
3秒前
LiuH完成签到,获得积分20
3秒前
乐乐应助distress采纳,获得10
3秒前
3秒前
joe_liu完成签到,获得积分20
4秒前
您的帮助将会点亮世界完成签到,获得积分10
4秒前
我是老大应助晶晶采纳,获得10
4秒前
Jasper应助Lawrence采纳,获得10
5秒前
唠叨的曼易完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
qaplay完成签到 ,获得积分0
5秒前
邵洋完成签到,获得积分10
5秒前
6秒前
6秒前
星辰大海应助Liangc333采纳,获得10
7秒前
7秒前
伊雪儿完成签到,获得积分10
7秒前
Nathan完成签到 ,获得积分10
8秒前
8秒前
8秒前
zuozhu发布了新的文献求助10
8秒前
科研通AI5应助大大采纳,获得10
8秒前
动漫大师发布了新的文献求助10
9秒前
果敢完成签到,获得积分10
10秒前
哇哈完成签到 ,获得积分10
10秒前
11秒前
11秒前
shun完成签到,获得积分10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667174
求助须知:如何正确求助?哪些是违规求助? 3225880
关于积分的说明 9766248
捐赠科研通 2935755
什么是DOI,文献DOI怎么找? 1607911
邀请新用户注册赠送积分活动 759407
科研通“疑难数据库(出版商)”最低求助积分说明 735359