Unsupervised Domain Adaptive Dose Prediction via Cross-Attention Transformer and Target-Specific Knowledge Preservation

计算机科学 人工智能 判别式 编码器 深度学习 卷积神经网络 学习迁移 机器学习 域适应 变压器 标记数据 人工神经网络 模式识别(心理学) 分类器(UML) 操作系统 物理 量子力学 电压
作者
Jiaqi Cui,Jianghong Xiao,Yun Hou,Wu Xi,Jiliu Zhou,Xingchen Peng,Yan Wang
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:33 (11) 被引量:6
标识
DOI:10.1142/s0129065723500570
摘要

Radiotherapy is one of the leading treatments for cancer. To accelerate the implementation of radiotherapy in clinic, various deep learning-based methods have been developed for automatic dose prediction. However, the effectiveness of these methods heavily relies on the availability of a substantial amount of data with labels, i.e. the dose distribution maps, which cost dosimetrists considerable time and effort to acquire. For cancers of low-incidence, such as cervical cancer, it is often a luxury to collect an adequate amount of labeled data to train a well-performing deep learning (DL) model. To mitigate this problem, in this paper, we resort to the unsupervised domain adaptation (UDA) strategy to achieve accurate dose prediction for cervical cancer (target domain) by leveraging the well-labeled high-incidence rectal cancer (source domain). Specifically, we introduce the cross-attention mechanism to learn the domain-invariant features and develop a cross-attention transformer-based encoder to align the two different cancer domains. Meanwhile, to preserve the target-specific knowledge, we employ multiple domain classifiers to enforce the network to extract more discriminative target features. In addition, we employ two independent convolutional neural network (CNN) decoders to compensate for the lack of spatial inductive bias in the pure transformer and generate accurate dose maps for both domains. Furthermore, to enhance the performance, two additional losses, i.e. a knowledge distillation loss (KDL) and a domain classification loss (DCL), are incorporated to transfer the domain-invariant features while preserving domain-specific information. Experimental results on a rectal cancer dataset and a cervical cancer dataset have demonstrated that our method achieves the best quantitative results with [Formula: see text], [Formula: see text], and HI of 1.446, 1.231, and 0.082, respectively, and outperforms other methods in terms of qualitative assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sophie完成签到,获得积分10
刚刚
砳熠完成签到 ,获得积分10
1秒前
雍州小铁匠完成签到 ,获得积分10
2秒前
Yolo完成签到 ,获得积分10
4秒前
6秒前
wdw2501完成签到,获得积分20
6秒前
科研搬运工完成签到,获得积分10
7秒前
yy完成签到 ,获得积分0
8秒前
武雨寒发布了新的文献求助10
10秒前
心灵美的颦完成签到 ,获得积分10
10秒前
罗密欧与沐浴液完成签到 ,获得积分10
16秒前
yu完成签到 ,获得积分10
17秒前
材1完成签到 ,获得积分10
17秒前
LiangRen完成签到 ,获得积分10
18秒前
白昼の月完成签到 ,获得积分0
18秒前
jin完成签到,获得积分10
20秒前
液晶屏99完成签到,获得积分10
23秒前
25秒前
wdw2501完成签到,获得积分20
30秒前
拉长的诗蕊完成签到,获得积分10
37秒前
陈默完成签到 ,获得积分10
40秒前
davyean完成签到,获得积分10
40秒前
General完成签到 ,获得积分10
45秒前
cdercder应助wdw2501采纳,获得10
47秒前
52秒前
zz完成签到 ,获得积分10
54秒前
伯爵完成签到 ,获得积分10
54秒前
背书强完成签到 ,获得积分10
54秒前
57秒前
知犯何逆完成签到 ,获得积分10
58秒前
光亮若翠完成签到,获得积分10
1分钟前
武雨寒发布了新的文献求助10
1分钟前
1分钟前
五月完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助puyehwu采纳,获得10
1分钟前
张若旸完成签到 ,获得积分10
1分钟前
恒牙完成签到 ,获得积分10
1分钟前
追梦完成签到,获得积分10
1分钟前
Niniiii应助Bin_Liu采纳,获得10
1分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808162
求助须知:如何正确求助?哪些是违规求助? 3352794
关于积分的说明 10360398
捐赠科研通 3068774
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810395
科研通“疑难数据库(出版商)”最低求助积分说明 766095