Advancing Shear Capacity Estimation in Rectangular RC Beams: A Cutting-Edge Artificial Intelligence Approach for Assessing the Contribution of FRP

纤维增强塑料 结构工程 计算机科学 人工神经网络 阿达布思 机器学习 支持向量机 人工智能 工程类
作者
Nima Ezami,Aybike Özyüksel Çiftçioğlu,Masoomeh Mirrashid,Hosein Naderpour
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (22): 16126-16126 被引量:7
标识
DOI:10.3390/su152216126
摘要

Shear strength prediction in FRP-bonded reinforced concrete beams is crucial for ensuring structural integrity and safety. In this extensive investigation, advanced machine learning algorithms are harnessed to achieve precise shear strength predictions for rectangular RC beams reinforced with FRP sheets. The aim of this research is to enhance the accuracy and reliability of shear strength estimation, providing valuable insights for the design and assessment of FRP-strengthened structures. The primary contributions of this study lie in the meticulous comparison of various machine learning algorithms, including Xgboost, Gradient Boosting, Random Forest, AdaBoost, K-nearest neighbors, and ElasticNet. Through comprehensive evaluation based on predictive performance, the most suitable model for accurately estimating the shear strength of FRP-reinforced rectangular RC beams is identified. Notably, Xgboost emerges as the superior performer, boasting an impressive R2 value of 0.901. It outperforms other algorithms and demonstrates the lowest RMSE, MAE, and MAPE values, establishing itself as the most accurate and reliable predictor. Furthermore, a sensitivity analysis is conducted using artificial neural networks to assess the influence of input variables. This additional research facet sheds light on the critical factors shaping shear strength outcomes. The study, as a whole, represents a substantial contribution to advancing the development of accurate and dependable prediction models. The practical implications of this work are far-reaching, particularly for engineering applications in the realm of structures reinforced with FRP. The findings have the potential to transform the approach to the design and assessment of such structures, elevating safety, efficiency, and performance to new heights.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助Jiang采纳,获得10
1秒前
2秒前
刘言发布了新的文献求助20
3秒前
李文浩发布了新的文献求助10
3秒前
完美世界应助李123采纳,获得10
4秒前
5秒前
Hello应助CHANGJIAGAO采纳,获得10
5秒前
6秒前
7秒前
小二郎应助ProfYang采纳,获得10
7秒前
7秒前
时迁关注了科研通微信公众号
8秒前
8秒前
田様应助李文浩采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
万信心发布了新的文献求助10
11秒前
深情安青应助NIUB采纳,获得10
12秒前
12秒前
13秒前
紫瑕完成签到,获得积分10
13秒前
桐桐应助干净冰露采纳,获得10
14秒前
棠梨子完成签到,获得积分10
14秒前
伞镜完成签到 ,获得积分10
14秒前
陵墨影发布了新的文献求助10
14秒前
15秒前
zyc发布了新的文献求助10
15秒前
清风发布了新的文献求助10
16秒前
16秒前
搜集达人应助Re采纳,获得10
16秒前
SciGPT应助傻傻的哈密瓜采纳,获得10
17秒前
刘言发布了新的文献求助10
18秒前
18秒前
无极微光应助奋斗的珍采纳,获得20
18秒前
萝卜干完成签到,获得积分10
19秒前
20秒前
20秒前
20秒前
CodeCraft应助大黑采纳,获得10
20秒前
黑月发布了新的文献求助30
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533364
求助须知:如何正确求助?哪些是违规求助? 4621655
关于积分的说明 14579741
捐赠科研通 4561776
什么是DOI,文献DOI怎么找? 2499572
邀请新用户注册赠送积分活动 1479321
关于科研通互助平台的介绍 1450522