亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SS-INR: Spatial-Spectral Implicit Neural Representation Network for Hyperspectral and Multispectral Image Fusion

高光谱成像 多光谱图像 增采样 计算机科学 图像分辨率 人工智能 图像融合 模式识别(心理学) 像素 全光谱成像 计算机视觉 遥感 图像(数学) 地理
作者
Xinying Wang,Cheng Cheng,Shenglan Liu,Ruoxi Song,Xianghai Wang,Lin Feng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:8
标识
DOI:10.1109/tgrs.2023.3317413
摘要

Due to the limitation of imaging equipment, it is difficult to acquire hyperspectral images with high spatial resolution directly. Existing approaches improve the resolution of HSIs by fusing multispectral image (MSI) and hyperspectral image (HSI). However, most of them are only feed-forward. They only learn low- to high-resolution feature mappings without considering the ill-posedness of super-resolution tasks, leading to a large solution space of mapping functions and making it difficult to learn a complete mapping function. Moreover, there is a large resolution difference between HSI and MSI, and some up-sampling operations are inevitably employed in the network. Nevertheless, traditional upsampling methods only represent pixel points in a discrete way, failing to adequately restore the continuous spatial and spectral information. To this end, this paper proposes a spatial-spectral implicit neural representation network for hyperspectral and multispectral image fusion (SS-INR). Inspired by the success of implicit neural representation(INR) in continuum reconstruction, we design spatial-INR and spectral-INR for spatial and spectral resolution reconstruction, respectively. SS-INR contains two processes: forward fusion (FF) and back-projection fusion(BPF). In the FF process, the input HSI is first spatially upsampled with Spatial-INR to overcome spatial resolution differences while performing initial fusion with MSI. In the BPF process, we explore the spatial and spectral degradation processes and use them as prior knowledge for error correction. Extensive experiments on five public hyperspectral datasets demonstrate the effectiveness of SS-INR, and SS-INR achieves competitive results compared with existing state-of-the-art fusion methods. The source code for SS-INR will be released at https://github.com/wxy11-27/SS-INR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助ZhaoW采纳,获得10
3秒前
研友_VZG7GZ应助ZhaoW采纳,获得10
3秒前
Cherry完成签到 ,获得积分10
6秒前
独特的初彤完成签到 ,获得积分10
16秒前
Willow完成签到,获得积分10
20秒前
20秒前
省级中药饮片完成签到 ,获得积分10
27秒前
拉长的迎曼完成签到 ,获得积分10
41秒前
48秒前
1分钟前
善学以致用应助bababiba采纳,获得10
1分钟前
1分钟前
Yi完成签到,获得积分10
1分钟前
机灵冷雪发布了新的文献求助10
1分钟前
huy完成签到,获得积分10
1分钟前
1分钟前
ZhaoW发布了新的文献求助10
1分钟前
Sharif318完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
ZhaoW发布了新的文献求助10
2分钟前
2分钟前
无语发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
CipherSage应助ZhaoW采纳,获得10
2分钟前
FMHChan完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
jyy关闭了jyy文献求助
3分钟前
3分钟前
hzwdm1发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
科研通AI2S应助jyy采纳,获得10
4分钟前
ckx完成签到 ,获得积分10
4分钟前
4分钟前
Yi关注了科研通微信公众号
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476493
求助须知:如何正确求助?哪些是违规求助? 4578102
关于积分的说明 14363447
捐赠科研通 4506065
什么是DOI,文献DOI怎么找? 2469099
邀请新用户注册赠送积分活动 1456539
关于科研通互助平台的介绍 1430331