已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Self-supervised learning with randomized cross-sensor masked reconstruction for human activity recognition

计算机科学 活动识别 人工智能 F1得分 变压器 标记数据 模式识别(心理学) 加速度计 机器学习 比例(比率) 监督学习 人工神经网络 量子力学 操作系统 物理 电压
作者
Aleksej Logacjov,Kerstin Bach
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:128: 107478-107478 被引量:9
标识
DOI:10.1016/j.engappai.2023.107478
摘要

Self-supervised learning (SSL) has gained prominence in the field of accelerometer-based human activity recognition (HAR) due to its ability to learn from both labeled and unlabeled data. While labeled data acquisition is costly, it is relatively easy to accumulate unlabeled sensor data. However, few works utilize large-scale, unlabeled datasets for pre-training despite its positive impact on downstream HAR performance, shown in recent work. Cross-sensor upstream training has also received limited attention. We introduce a new auxiliary task, randomized cross-sensor masked reconstruction (RCSMR), for SSL. We pre-train a transformer encoder on the large-scale HUNT4 dataset with RCSMR. The resulting model exhibits better performance on two downstream datasets with the same sensor setup as HUNT4 (HARTH and HAR70+), achieving an average F1-score of 74.03%, surpassing two other auxiliary tasks (70.51% to 72.78%) and five supervised baselines (47.51% to 58.84%). Moreover, when applied to three datasets with sensor configurations distinct from HUNT4 (USC-HAD, PAMAP2, MobiAct), RCSMR outperforms nine state-of-the-art SSL methods, with an F1-score of 72.99% compared to F1-scores ranging from 51.46% to 69.88%. We further show that certain activities exhibit improved separability when utilizing latent representations learned through RCSMR, indicating reduced sensor position and orientation bias. Our method is applied in large-scale epidemiological studies, offering valuable insights into the impact of physical activity behavior on public health.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
zhanggq123发布了新的文献求助10
3秒前
ceeray23应助默默善愁采纳,获得10
4秒前
离雪应助默默善愁采纳,获得10
4秒前
香蕉觅云应助默默善愁采纳,获得10
4秒前
Lucas应助默默善愁采纳,获得10
4秒前
Gauss应助默默善愁采纳,获得30
4秒前
科研通AI6应助默默善愁采纳,获得10
4秒前
星辰大海应助默默善愁采纳,获得30
4秒前
5秒前
Colin发布了新的文献求助10
8秒前
8秒前
chouchou发布了新的文献求助10
11秒前
12秒前
qqq发布了新的文献求助10
13秒前
14秒前
157699完成签到,获得积分10
14秒前
小二郎应助pililili采纳,获得10
15秒前
15秒前
Evan完成签到 ,获得积分10
16秒前
Colin完成签到,获得积分10
17秒前
香蕉觅云应助zorro3574采纳,获得10
17秒前
可乐鸡翅发布了新的文献求助10
17秒前
科研通AI6应助水蓝丨剑月采纳,获得10
17秒前
liyanping发布了新的文献求助10
18秒前
天天快乐应助ruopiao采纳,获得10
19秒前
白华苍松发布了新的文献求助20
20秒前
英俊的铭应助朴实一鸣采纳,获得10
20秒前
wil完成签到,获得积分10
20秒前
21秒前
darkpigx发布了新的文献求助30
21秒前
chouchou完成签到,获得积分10
22秒前
22秒前
科研通AI6应助131949采纳,获得10
24秒前
随机科研发布了新的文献求助10
26秒前
拼搏紫槐发布了新的文献求助10
27秒前
默默善愁发布了新的文献求助10
28秒前
十一发布了新的文献求助10
28秒前
ShaohuaGuo完成签到,获得积分10
31秒前
如意厉完成签到,获得积分10
31秒前
嘤嘤怪应助从容的无心采纳,获得10
32秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502249
求助须知:如何正确求助?哪些是违规求助? 4598249
关于积分的说明 14463199
捐赠科研通 4531818
什么是DOI,文献DOI怎么找? 2483625
邀请新用户注册赠送积分活动 1466915
关于科研通互助平台的介绍 1439528