清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Transfer learning and its extensive appositeness in human activity recognition: A survey

计算机科学 机器学习 人工智能 学习迁移 背景(考古学) 引用 过程(计算) 间隙 领域(数学分析) 数据科学 万维网 数学分析 泌尿科 操作系统 古生物学 生物 医学 数学
作者
Abhisek Ray,Maheshkumar H. Kolekar
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:240: 122538-122538 被引量:3
标识
DOI:10.1016/j.eswa.2023.122538
摘要

In this competitive world, the supervision and monitoring of human resources are primary and necessary tasks to drive context-aware applications. Advancement in sensor and computational technology has cleared the path for automatic human activity recognition (HAR). First, machine learning and later deep learning play a cardinal role in this automation process. Classical machine learning approaches follow the hypothesis that the training, validation, and testing data belong to the same domain, where data distribution characteristics and the input feature space are alike. However, during real-time HAR, the above hypothesis does not always true. Transfer learning helps in an extended manner to transfer the required knowledge among heterogeneous data of various activities. To display the hierarchical advancements in transfer learning-enhanced HAR, we have shortlisted the 150 most influential works and articles from 2014–2021 based on their contribution, citation score, and year of publication. These selected articles are collected from IEEE Xplore, Web of Science, and Google Scholar digital libraries. We have also analyzed the statistical research interest related to this topic to substantiate the significance of our survey. We have found a significant growth of 10% in research publications related to this domain every year. Our survey provides a unique classification model to delineate the diversity in transfer learning-based HAR. This survey delves into the world of HAR datasets, exploring their types, specifications, advantages, and limitations. We also examine the steps involved in HAR, including the various transfer learning techniques and performance metrics, as well as the computational complexity associated with these methods. Additionally, we identify the challenges and gaps in HAR related to transfer learning and provide insights into future directions for researchers in this field. Based on the survey findings, researchers prefer the inductive transfer method, feature learning transfer mode, and cross-action transfer domain more over others due to their superior performance, with respective popularity scores of 55%, 40.8%, and 50.2%. This review aims to equip readers with a comprehensive understanding of HAR and transfer learning mechanisms, while also highlighting areas that require further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助皮皮采纳,获得10
刚刚
14秒前
祁尒完成签到,获得积分10
16秒前
机智咖啡豆完成签到 ,获得积分10
17秒前
GG完成签到 ,获得积分10
18秒前
21秒前
苏鱼完成签到 ,获得积分10
24秒前
皮皮发布了新的文献求助10
25秒前
旺大财完成签到 ,获得积分10
33秒前
番茄小超人2号完成签到 ,获得积分10
53秒前
54秒前
RenatoCai完成签到 ,获得积分10
57秒前
我很好完成签到 ,获得积分10
58秒前
魁梧的盼望完成签到 ,获得积分10
59秒前
afli完成签到 ,获得积分0
1分钟前
科研临床两手抓完成签到 ,获得积分10
1分钟前
佳期如梦完成签到 ,获得积分10
1分钟前
糊涂的青烟完成签到 ,获得积分10
1分钟前
lalala完成签到 ,获得积分10
1分钟前
luckygirl完成签到 ,获得积分10
1分钟前
田様应助优秀的尔风采纳,获得10
1分钟前
宏伟应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得30
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
elsa622完成签到 ,获得积分10
1分钟前
xkhxh完成签到 ,获得积分10
1分钟前
行走的绅士完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
毛毛弟完成签到 ,获得积分10
1分钟前
庄怀逸完成签到 ,获得积分10
1分钟前
满意的柏柳完成签到 ,获得积分10
1分钟前
qq完成签到 ,获得积分10
2分钟前
victory_liu完成签到,获得积分10
2分钟前
无奈破茧完成签到,获得积分10
2分钟前
赘婿应助cxl采纳,获得10
2分钟前
朱婷完成签到 ,获得积分10
2分钟前
航行天下完成签到 ,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792550
求助须知:如何正确求助?哪些是违规求助? 3336769
关于积分的说明 10282111
捐赠科研通 3053544
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468