已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Heterogeneous graph-based knowledge tracing with spatiotemporal evolution

计算机科学 遗忘 知识图 图形 追踪 领域知识 知识抽取 人工智能 理论计算机科学 机器学习 认知心理学 心理学 操作系统
作者
Huali Yang,Shengze Hu,Jing Geng,Tao Huang,Junjie Hu,Hao Zhang,Qiang Zhu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122249-122249 被引量:21
标识
DOI:10.1016/j.eswa.2023.122249
摘要

Knowledge tracing (KT), in which the future performance of students is estimated by tracing their knowledge states based on their responses to exercises, is widely applied in the field of intelligent education. However, existing mainstream KT models explore the importance of knowledge relations but ignore the key role of cognitive factors. According to the knowledge construction theory, the human cognitive system performs both spatial accommodation and temporal assimilation to internalize knowledge. In this paper, we propose an innovative heterogeneous graph-based Knowledge tracing method with spatiotemporal evolution (TSKT), in which knowledge state evolution is traced along both temporal and spatial dimensions. We construct a heterogeneous graph with multiple exercise attributes, including content, concepts, and difficulty, to obtain a knowledge space with richer exercise representations through hierarchical aggregation. We design a spatial updating module in which each interaction updates the current node's state of the knowledge space and transfers its influence to its neighbors. We also design a temporal updating module to further update the knowledge state through short-term memory enhancing and long-term memory forgetting. Finally, we stack these modules to obtain deeper features by using alternate spatiotemporal updating. Extensive experiments on three datasets reveal the superiority of the proposed method and its variants in terms of future performance prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李昕123发布了新的文献求助10
1秒前
迟宏珈发布了新的文献求助10
2秒前
共享精神应助周训涛采纳,获得10
5秒前
舒心的凝莲应助yang采纳,获得10
5秒前
妍妍最美完成签到,获得积分10
6秒前
wanci应助韩达大采纳,获得10
7秒前
8秒前
科研通AI6应助hey采纳,获得10
9秒前
隐形曼青应助dsdsd采纳,获得10
10秒前
10秒前
科研通AI2S应助nunu采纳,获得10
10秒前
li完成签到,获得积分10
11秒前
12秒前
12秒前
14秒前
XXY发布了新的文献求助10
14秒前
winew完成签到 ,获得积分10
15秒前
15秒前
uu发布了新的文献求助10
17秒前
!hau发布了新的文献求助10
18秒前
丰富以寒完成签到 ,获得积分10
18秒前
19秒前
Panjiao发布了新的文献求助10
19秒前
19秒前
天天快乐应助DX采纳,获得10
20秒前
酷酷发布了新的文献求助10
20秒前
单元波澜不惊完成签到,获得积分10
20秒前
23秒前
23秒前
周训涛发布了新的文献求助10
24秒前
工商第一发布了新的文献求助10
25秒前
坚定士萧应助Virtual采纳,获得10
25秒前
AOPs发布了新的文献求助10
26秒前
璟黎完成签到,获得积分10
26秒前
orixero应助duoduo采纳,获得10
27秒前
27秒前
南冥完成签到 ,获得积分10
28秒前
酷酷完成签到,获得积分20
30秒前
盖景浩关注了科研通微信公众号
31秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4483062
求助须知:如何正确求助?哪些是违规求助? 3939098
关于积分的说明 12218897
捐赠科研通 3594317
什么是DOI,文献DOI怎么找? 1976701
邀请新用户注册赠送积分活动 1013825
科研通“疑难数据库(出版商)”最低求助积分说明 906901