数学
戒指(化学)
编码(集合论)
组合数学
表征(材料科学)
代数数
线性码
离散数学
算法
物理
区块代码
数学分析
计算机科学
解码方法
光学
集合(抽象数据类型)
有机化学
化学
程序设计语言
作者
Amina Bellil,Kenza Guenda,Nuh Aydın,Peihan Liu,T. Aaron Gulliver
摘要
In this paper, we investigate the algebraic structures and properties of constacyclic and quasi-twisted (QT) codes over the ring $ R = \mathbb{Z}_{q}+u\mathbb{Z}_{q} $ with $ u^{2} = 1 $. We show that the image of a constacyclic code over $ R $ under a natural Gray map is a QT code of index $ 2 $ over $ \mathbb{Z}_q $. Given the decomposition of a QT code, we find the decomposition of its dual code. We present 116 new linear codes over $ \mathbb{Z}_{4} $ from the Gray images of QT codes over this ring with $ q = 4 $. Finally, a characterization of linear complementary pair (LCP) constacyclic codes over $ R $ is provided.
科研通智能强力驱动
Strongly Powered by AbleSci AI