SGCCL: Siamese Graph Contrastive Consensus Learning for Personalized Recommendation

推荐系统 计算机科学 二部图 机器学习 协同过滤 图形 相似性(几何) 情报检索 水准点(测量) 人工智能 自然语言处理 理论计算机科学 大地测量学 图像(数学) 地理
作者
Boyu Li,Ting Guo,Xingquan Zhu,Qian Li,Yang Wang,Fang Chen
标识
DOI:10.1145/3539597.3570422
摘要

Contrastive-learning-based neural networks have recently been introduced to recommender systems, due to their unique advantage of injecting collaborative signals to model deep representations, and the self-supervision nature in the learning process. Existing contrastive learning methods for recommendations are mainly proposed through introducing augmentations to the user-item (U-I) bipartite graphs. Such a contrastive learning process, however, is susceptible to bias towards popular items and users, because higher-degree users/items are subject to more augmentations and their correlations are more captured. In this paper, we advocate a Siamese Graph Contrastive Consensus Learning (SGCCL) framework, to explore intrinsic correlations and alleviate the bias effects for personalized recommendation. Instead of augmenting original U-I networks, we introduce siamese graphs, which are homogeneous relations of user-user (U-U) similarity and item-item (I-I) correlations. A contrastive consensus optimization process is also adopted to learn effective features for user-item ratings, user-user similarity, and item-item correlation. Finally, we employ the self-supervised learning coupled with the siamese item-item/user-user graph relationships, which ensures unpopular users/items are well preserved in the embedding space. Different from existing studies, SGCCL performs well on both overall and debiasing recommendation tasks resulting in a balanced recommender. Experiments on four benchmark datasets demonstrate that SGCCL outperforms state-of-the-art methods with higher accuracy and greater long-tail item/user exposure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙王爱吃糖完成签到 ,获得积分10
刚刚
胜天半子完成签到 ,获得积分10
5秒前
5秒前
不过尔尔完成签到 ,获得积分10
9秒前
LiangRen完成签到 ,获得积分10
9秒前
闻屿完成签到,获得积分10
9秒前
cdercder应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
笑林完成签到 ,获得积分10
18秒前
CLTTTt完成签到,获得积分10
27秒前
28秒前
TTTHANKS完成签到 ,获得积分10
32秒前
手握灵珠常奋笔完成签到,获得积分10
34秒前
余味应助滕皓轩采纳,获得10
38秒前
虚幻元风完成签到 ,获得积分10
40秒前
我爱学习完成签到,获得积分10
45秒前
优雅的雁凡完成签到,获得积分10
46秒前
54秒前
eternal_dreams完成签到 ,获得积分10
56秒前
zw完成签到,获得积分10
57秒前
57秒前
笑点低的孤丹完成签到 ,获得积分10
1分钟前
hover发布了新的文献求助10
1分钟前
体贴的叛逆者完成签到,获得积分10
1分钟前
yingw驳回了Ava应助
1分钟前
jason完成签到 ,获得积分10
1分钟前
MYMELODY完成签到,获得积分10
1分钟前
彭彭蓬完成签到 ,获得积分20
1分钟前
科研通AI5应助盈盈采纳,获得30
1分钟前
兴奋小丸子完成签到,获得积分10
1分钟前
依依完成签到,获得积分10
1分钟前
米博士完成签到,获得积分10
1分钟前
梓唯忧完成签到 ,获得积分10
1分钟前
czzlancer完成签到,获得积分10
1分钟前
伶俐的语雪完成签到,获得积分10
1分钟前
材1完成签到 ,获得积分10
1分钟前
1分钟前
momo发布了新的文献求助10
1分钟前
Lucas应助momo采纳,获得10
1分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798555
求助须知:如何正确求助?哪些是违规求助? 3344090
关于积分的说明 10318508
捐赠科研通 3060649
什么是DOI,文献DOI怎么找? 1679753
邀请新用户注册赠送积分活动 806769
科研通“疑难数据库(出版商)”最低求助积分说明 763353