已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic Fracture Segmentation and Detection From Image Logging Using Mask R-CNN

计算机科学 特征(语言学) 人工智能 深度学习 棱锥(几何) 卷积神经网络 分割 模式识别(心理学) 工作流程 抽象 图像(数学) 特征工程 断裂(地质) 岩石物理学 数据挖掘 图像分割 鉴定(生物学) 地质学 数据库 哲学 语言学 物理 岩土工程 认识论 多孔性 光学 植物 生物
作者
Yubo Liu,Guangzhi Liao,Lizhi Xiao,Zhen Liang,Jiawei Zhang,Xinyu Zhang,Zhe Zhang,Jun Zhou,Guojun Li
标识
DOI:10.30632/spwla-2022-0115
摘要

Image logs provide a wide range of information about petrophysical properties and geological features of reservoirs. The identification of fractures by image logging is very important for the precise prediction of production and the accurate evaluation of oil and gas. However, the interpretations of underlying features from fracture occurrences, which could be crucial for experts in fields, are relatively rare. Nowadays, deep learning networks, used to learn representations of image with diverse levels of abstraction, could perform well for understanding the intrinsic features of image log data. In this study, we proposed a deep learning method called Mask R-CNN to recognize the features of fractures based on the datasets of image logs. This deep net detects and segments each fracture individually by focusing on local information of image logs. It provides a novel way for experts and researchers to identify and quantify the fractures precisely and then calculate parameters of fractures efficiently. The applied model contains two parallel branches to recognize and segment fractures respectively. The first workflow, following the idea of Faster R-CNN, is used to track the positions of fracture through the Region Proposal Networks (RPN) and two regression networks. The other branch performs a Fully Connected Network (FCN) to implement up-sampling and output the mask of fractures from image log data. These branches both accept inputs which are based on the same feature maps via the modified Feature Pyramid Networks (Feature Pyramid Networks). The FPN is used to extract features with various scales. To obtain dataset with high quality, we annotated the fracture by manual and implemented data augmentations. All kinds of labeled fractures are marked as mask images in which the pixels 0, 1, 2 and 3 stand for background, induced fractures natural fractures and bedding separately. By the mask image with pixel-wise labels, the dataset with 518 images was used in this paper. Overall, the proposed method in this paper achieves ideal performance to detect the fractures and beddings with the average precision of over 75%. Based on the identification result, we calculate parameters of fractures, such as dip angle. As a consequence, the method in this work shows its potential for identifying all the significant information in borehole through image log data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妩媚的夏烟完成签到,获得积分10
刚刚
科研通AI2S应助小小怪采纳,获得10
3秒前
kkkk完成签到,获得积分20
3秒前
hgg完成签到,获得积分10
5秒前
zhh发布了新的文献求助30
6秒前
7秒前
英俊的铭应助YUN采纳,获得10
8秒前
斯文败类应助养乐多采纳,获得10
10秒前
hgg发布了新的文献求助10
12秒前
小小怪完成签到 ,获得积分10
13秒前
13秒前
pretty完成签到 ,获得积分10
14秒前
m1nt完成签到,获得积分0
14秒前
HEIKU应助科研通管家采纳,获得10
14秒前
HEIKU应助科研通管家采纳,获得10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
HEIKU应助科研通管家采纳,获得10
15秒前
NexusExplorer应助科研通管家采纳,获得20
15秒前
小T在干嘛完成签到 ,获得积分10
17秒前
zhi行发布了新的文献求助10
19秒前
21秒前
leave完成签到 ,获得积分10
24秒前
24秒前
养乐多发布了新的文献求助10
29秒前
29秒前
搜集达人应助聪慧的松鼠采纳,获得10
32秒前
果粒多完成签到 ,获得积分10
32秒前
彭于晏应助Wei采纳,获得10
34秒前
35秒前
35秒前
无私小凡发布了新的文献求助10
39秒前
养乐多完成签到,获得积分10
39秒前
40秒前
41秒前
42秒前
43秒前
弧光完成签到 ,获得积分10
46秒前
无私小凡完成签到,获得积分10
47秒前
Wei发布了新的文献求助10
48秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3903788
求助须知:如何正确求助?哪些是违规求助? 3448680
关于积分的说明 10853855
捐赠科研通 3174066
什么是DOI,文献DOI怎么找? 1753704
邀请新用户注册赠送积分活动 847871
科研通“疑难数据库(出版商)”最低求助积分说明 790547