亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Explaining the black-box smoothly—A counterfactual approach

反事实思维 计算机科学 分类器(UML) 人工智能 机器学习 上下文图像分类 模式识别(心理学) 图像(数学) 心理学 社会心理学
作者
Sumedha Singla,Motahhare Eslami,Brian P. Pollack,S.J. Wallace,Kayhan Batmanghelich
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:84: 102721-102721 被引量:40
标识
DOI:10.1016/j.media.2022.102721
摘要

We propose a BlackBox Counterfactual Explainer, designed to explain image classification models for medical applications. Classical approaches (e.g., , saliency maps) that assess feature importance do not explain how imaging features in important anatomical regions are relevant to the classification decision. Such reasoning is crucial for transparent decision-making in healthcare applications. Our framework explains the decision for a target class by gradually exaggerating the semantic effect of the class in a query image. We adopted a Generative Adversarial Network (GAN) to generate a progressive set of perturbations to a query image, such that the classification decision changes from its original class to its negation. Our proposed loss function preserves essential details (e.g., support devices) in the generated images. We used counterfactual explanations from our framework to audit a classifier trained on a chest X-ray dataset with multiple labels. Clinical evaluation of model explanations is a challenging task. We proposed clinically-relevant quantitative metrics such as cardiothoracic ratio and the score of a healthy costophrenic recess to evaluate our explanations. We used these metrics to quantify the counterfactual changes between the populations with negative and positive decisions for a diagnosis by the given classifier. We conducted a human-grounded experiment with diagnostic radiology residents to compare different styles of explanations (no explanation, saliency map, cycleGAN explanation, and our counterfactual explanation) by evaluating different aspects of explanations: (1) understandability, (2) classifier's decision justification, (3) visual quality, (d) identity preservation, and (5) overall helpfulness of an explanation to the users. Our results show that our counterfactual explanation was the only explanation method that significantly improved the users' understanding of the classifier's decision compared to the no-explanation baseline. Our metrics established a benchmark for evaluating model explanation methods in medical images. Our explanations revealed that the classifier relied on clinically relevant radiographic features for its diagnostic decisions, thus making its decision-making process more transparent to the end-user.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iacir33完成签到,获得积分20
48秒前
小胜完成签到 ,获得积分10
1分钟前
小羊完成签到 ,获得积分10
1分钟前
1分钟前
Georgechan完成签到,获得积分10
2分钟前
科研通AI2S应助天空之城采纳,获得10
2分钟前
2分钟前
天空之城发布了新的文献求助10
2分钟前
2分钟前
3分钟前
Ulrica发布了新的文献求助10
3分钟前
小苗完成签到 ,获得积分10
3分钟前
我是老大应助赵赵采纳,获得10
3分钟前
所所应助科研通管家采纳,获得10
4分钟前
5分钟前
赵赵发布了新的文献求助10
5分钟前
5分钟前
满意访冬发布了新的文献求助10
5分钟前
王鑫完成签到 ,获得积分10
5分钟前
赵赵完成签到,获得积分10
5分钟前
feiCheung完成签到 ,获得积分10
6分钟前
bkagyin应助科研通管家采纳,获得10
6分钟前
ding应助科研通管家采纳,获得10
6分钟前
IvanLIu完成签到 ,获得积分10
6分钟前
忐忑的面包完成签到,获得积分20
7分钟前
crazy完成签到,获得积分10
7分钟前
zcbb完成签到,获得积分10
7分钟前
慕青应助科研通管家采纳,获得30
8分钟前
iShine完成签到 ,获得积分10
8分钟前
puuming完成签到,获得积分10
8分钟前
9分钟前
9分钟前
天空之城发布了新的文献求助10
9分钟前
puuming发布了新的文献求助10
9分钟前
科研通AI2S应助天空之城采纳,获得30
9分钟前
Demi_Ming完成签到,获得积分10
12分钟前
joanna完成签到,获得积分10
12分钟前
虚心怜阳完成签到 ,获得积分10
12分钟前
LZhao01完成签到,获得积分10
12分钟前
LZhao01发布了新的文献求助10
13分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777609
求助须知:如何正确求助?哪些是违规求助? 3322988
关于积分的说明 10212841
捐赠科研通 3038316
什么是DOI,文献DOI怎么找? 1667308
邀请新用户注册赠送积分活动 798103
科研通“疑难数据库(出版商)”最低求助积分说明 758229