已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting depressive symptoms in middle-aged and elderly adults using sleep data and clinical health markers: A machine learning approach

抑郁症状 睡眠(系统调用) 萧条(经济学) 心理学 老年学 临床心理学 医学 精神科 计算机科学 认知 宏观经济学 经济 操作系统
作者
Stephania Ruth Basílio Silva Gomes,Malcolm von Schantz,Mário André Leocadio-Miguel
出处
期刊:Sleep Medicine [Elsevier BV]
卷期号:102: 123-131 被引量:13
标识
DOI:10.1016/j.sleep.2023.01.002
摘要

Comorbid depression is a highly prevalent and debilitating condition in middle-aged and elderly adults, particularly when associated with obesity, diabetes, and sleep disturbances. In this context, there is a growing need to develop efficient screening methods for cases based on clinical health markers for these comorbidities and sleep data. Thus, our objective was to detect depressive symptoms in these subjects, considering general biomarkers of obesity and diabetes and variables related to sleep and physical exercise through a machine learning approach. We used the National Health and Nutrition Examination Survey (NHANES) 2015–2016 data. Eighteen variables on self-reported physical activity, self-reported sleep habits, sleep disturbance indicative, anthropometric measurements, sociodemographic characteristics and plasma biomarkers of obesity and diabetes were selected as predictors. A total of 2907 middle-aged and elderly subjects were eligible for the study. Supervised learning algorithms such as Lasso penalized Logistic Regression (LR), Random Forest (RF) and Extreme Gradient Boosting (XGBoost) were implemented. XGBoost provided greater accuracy and precision (87%), with a proportion of hits in cases with depressive symptoms above 80%. In addition, daytime sleepiness was the most significant predictor variable for predicting depressive symptoms. Sleep and physical activity variables, in addition to obesity and diabetes biomarkers, together assume significant importance to predict, with accuracy and precision of 87%, the occurrence of depressive symptoms in middle-aged and elderly individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得20
6秒前
祁问儿完成签到 ,获得积分10
9秒前
bkagyin应助卫三采纳,获得10
17秒前
宣灵薇完成签到,获得积分0
18秒前
心灵美大侠完成签到,获得积分10
18秒前
有趣的银完成签到,获得积分10
19秒前
郭虎虎发布了新的文献求助10
21秒前
QuxiZhang完成签到,获得积分10
24秒前
小枣完成签到 ,获得积分10
25秒前
李小二完成签到,获得积分10
28秒前
pegasus0802完成签到,获得积分10
32秒前
Tangyartie完成签到 ,获得积分10
33秒前
我是老大应助null采纳,获得10
34秒前
吉良咸鱼应助李诗琦采纳,获得20
34秒前
小张完成签到 ,获得积分10
42秒前
44秒前
aaafa完成签到,获得积分10
44秒前
HEAUBOOK应助郭虎虎采纳,获得10
47秒前
null发布了新的文献求助10
49秒前
49秒前
51秒前
愤怒的咖啡完成签到,获得积分10
54秒前
57秒前
执着乐双完成签到,获得积分10
58秒前
Ava应助失眠的凡阳采纳,获得20
58秒前
junzilan发布了新的文献求助10
1分钟前
1分钟前
ZYY完成签到,获得积分10
1分钟前
1分钟前
李雷完成签到,获得积分10
1分钟前
Otter完成签到,获得积分10
1分钟前
骆凤灵完成签到 ,获得积分10
1分钟前
blueblue发布了新的文献求助30
1分钟前
积极的尔岚完成签到 ,获得积分10
1分钟前
1分钟前
3MB完成签到 ,获得积分10
1分钟前
Ava应助小车同学采纳,获得10
1分钟前
幽默果汁完成签到 ,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811601
求助须知:如何正确求助?哪些是违规求助? 3355933
关于积分的说明 10378347
捐赠科研通 3072824
什么是DOI,文献DOI怎么找? 1687749
邀请新用户注册赠送积分活动 811767
科研通“疑难数据库(出版商)”最低求助积分说明 766817