亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DAMO-YOLO : A Report on Real-Time Object Detection Design

计算机科学 目标检测 升级 联营 探测器 延迟(音频) 并行计算 人工智能 模式识别(心理学) 操作系统 电信
作者
Xianzhe Xu,Yiqi Jiang,Weihua Chen,Yilun Huang,Yuan Zhang,Xiuyu Sun
出处
期刊:Cornell University - arXiv 被引量:73
标识
DOI:10.48550/arxiv.2211.15444
摘要

In this report, we present a fast and accurate object detection method dubbed DAMO-YOLO, which achieves higher performance than the state-of-the-art YOLO series. DAMO-YOLO is extended from YOLO with some new technologies, including Neural Architecture Search (NAS), efficient Reparameterized Generalized-FPN (RepGFPN), a lightweight head with AlignedOTA label assignment, and distillation enhancement. In particular, we use MAE-NAS, a method guided by the principle of maximum entropy, to search our detection backbone under the constraints of low latency and high performance, producing ResNet/CSP-like structures with spatial pyramid pooling and focus modules. In the design of necks and heads, we follow the rule of ``large neck, small head''.We import Generalized-FPN with accelerated queen-fusion to build the detector neck and upgrade its CSPNet with efficient layer aggregation networks (ELAN) and reparameterization. Then we investigate how detector head size affects detection performance and find that a heavy neck with only one task projection layer would yield better results.In addition, AlignedOTA is proposed to solve the misalignment problem in label assignment. And a distillation schema is introduced to improve performance to a higher level. Based on these new techs, we build a suite of models at various scales to meet the needs of different scenarios. For general industry requirements, we propose DAMO-YOLO-T/S/M/L. They can achieve 43.6/47.7/50.2/51.9 mAPs on COCO with the latency of 2.78/3.83/5.62/7.95 ms on T4 GPUs respectively. Additionally, for edge devices with limited computing power, we have also proposed DAMO-YOLO-Ns/Nm/Nl lightweight models. They can achieve 32.3/38.2/40.5 mAPs on COCO with the latency of 4.08/5.05/6.69 ms on X86-CPU. Our proposed general and lightweight models have outperformed other YOLO series models in their respective application scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
兴奋访风发布了新的文献求助20
22秒前
在水一方应助HHW采纳,获得10
26秒前
haoliu完成签到,获得积分10
28秒前
31秒前
HHW发布了新的文献求助10
36秒前
BulingQAQ完成签到,获得积分10
43秒前
karenalee完成签到,获得积分10
45秒前
53秒前
1分钟前
雨寒完成签到,获得积分10
1分钟前
1分钟前
1分钟前
MMMMM举报Jonas求助涉嫌违规
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
www完成签到 ,获得积分10
1分钟前
简单成危应助科研通管家采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Bonan关注了科研通微信公众号
1分钟前
1分钟前
mmyhn发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Dreamer.发布了新的文献求助10
1分钟前
科研通AI6应助yyyyyyya采纳,获得30
1分钟前
1分钟前
Bonan发布了新的文献求助10
1分钟前
rrjl完成签到,获得积分10
2分钟前
testmanfuxk完成签到,获得积分10
2分钟前
2分钟前
顾矜应助隐形怜南采纳,获得10
2分钟前
2分钟前
2分钟前
研友_Lw4Ngn发布了新的文献求助10
2分钟前
小小斌完成签到,获得积分10
2分钟前
2分钟前
2分钟前
CodeCraft应助vanvan123采纳,获得10
3分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4255681
求助须知:如何正确求助?哪些是违规求助? 3788395
关于积分的说明 11888634
捐赠科研通 3438266
什么是DOI,文献DOI怎么找? 1886830
邀请新用户注册赠送积分活动 938022
科研通“疑难数据库(出版商)”最低求助积分说明 843661