Multimodal spatiotemporal skeletal kinematic gait feature fusion for vision-based fall detection

计算机科学 人工智能 特征(语言学) 步态 运动学 模式识别(心理学) 分类器(UML) 计算机视觉 数据挖掘 机器学习 生理学 哲学 语言学 物理 经典力学 生物
作者
M Amsaprabhaa,Nancy Jane Y,Khanna Nehemiah H
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:212: 118681-118681 被引量:49
标识
DOI:10.1016/j.eswa.2022.118681
摘要

Fall happens when a person's movement coordination is disturbed, forcing them to rest on the ground unintentionally causing serious health risks. The objective of this work is to develop a Multimodal SpatioTemporal Skeletal Kinematic Gait Feature Fusion (MSTSK-GFF) classifier for detecting fall using video data. The walking pattern of an individual is referred to as gait. The event of fall recorded in video shows discrepancies and irregularities in gait patterns. Analysis of these patterns plays a vital role in the identification of fall risk. However, assessment of the gait patterns from video data remains challenging due to its spatial and temporal feature dependencies. The proposed MSTSK-GFF framework presents a multimodal feature fusion process that overcomes these challenges and generates two sets of spatiotemporal kinematic gait features using SpatioTemporal Graph Convolution Network (STGCN) and 1D-CNN network model. These two generated feature sets are combined using concatenative feature fusion process and classification model is constucted for detecting fall. For optimizing the network weights, a bio-inspired spotted hyena optimizer is applied during training process. Finally, performance of the classification model is evaluated and compared to detect fall in videos. The proposed work is experimented with the two vision-based fall datasets namely, UR Fall Detection (URFD) dataset and self-build dataset. The experimental outcome proves the effectiveness of MSTSK-GFF in terms of its classification accuracy of 96.53% and 95.80% with two datasets when compared with existing state-of-the-art techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
要笑cc完成签到,获得积分10
1秒前
牛奶面包完成签到 ,获得积分10
2秒前
宣宣宣0733完成签到,获得积分10
3秒前
胡质斌完成签到,获得积分10
5秒前
经纲完成签到 ,获得积分0
5秒前
Wang发布了新的文献求助10
6秒前
余味应助科研通管家采纳,获得10
7秒前
豆花浮元子完成签到 ,获得积分10
7秒前
余味应助科研通管家采纳,获得10
7秒前
7秒前
ARIA完成签到 ,获得积分10
8秒前
朱比特完成签到,获得积分10
11秒前
BINBIN完成签到 ,获得积分10
16秒前
panpanliumin完成签到,获得积分0
19秒前
20秒前
21秒前
24秒前
Balance Man完成签到 ,获得积分10
26秒前
eternal_dreams完成签到 ,获得积分10
35秒前
janejane发布了新的文献求助10
37秒前
lishui完成签到 ,获得积分10
39秒前
青牛完成签到,获得积分10
40秒前
steven完成签到 ,获得积分10
41秒前
janejane完成签到 ,获得积分20
47秒前
科科通通完成签到,获得积分10
48秒前
qiancib202完成签到,获得积分10
48秒前
hahaha完成签到,获得积分10
49秒前
鲲鹏完成签到 ,获得积分10
52秒前
onevip完成签到,获得积分0
57秒前
手帕很忙完成签到,获得积分10
59秒前
西山菩提完成签到,获得积分10
1分钟前
Ayn完成签到 ,获得积分10
1分钟前
科研通AI5应助雅香采纳,获得10
1分钟前
ESC惠子子子子子完成签到 ,获得积分10
1分钟前
忒寒碜完成签到,获得积分10
1分钟前
1分钟前
1分钟前
背后海亦发布了新的文献求助10
1分钟前
鲤鱼越越完成签到 ,获得积分10
1分钟前
ymxlcfc完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792563
求助须知:如何正确求助?哪些是违规求助? 3336787
关于积分的说明 10282162
捐赠科研通 3053570
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761481