Research on nighttime road visibility monitoring based on video images

能见度 毒物控制 计算机科学 计算机视觉 运输工程 遥感 环境科学 人工智能 地理 工程类 医疗急救 气象学 医学
作者
Yonggao Yue,S Zhang,Zhiyuan Wu,Jianpu Xi,Zonglin Shi,Lei Wang,Lijuan Deng
出处
期刊:Traffic Injury Prevention [Taylor & Francis]
卷期号:: 1-9
标识
DOI:10.1080/15389588.2025.2495203
摘要

Road traffic accidents have become a serious social problem, with a significant proportion of accidents caused by insufficient visibility on roads at night. Therefore, nighttime road visibility detection based on video images has become one of the difficulties and a key issue in domestic and international research. This study analyzes the importance of nighttime road visibility monitoring, introduces the structure, working principle, and monitoring method of a video image nighttime visibility monitoring system, and proposes a nighttime road visibility monitoring method based on video images. Based on the characteristics of nighttime images, an improved dark channel prior method was adopted to calculate the nighttime road visibility. This method mainly includes eight steps: video image acquisition, image grayscale processing, calculation of image average variance, image average gradient, drawing grayscale histograms, image enhancement based on the calculated values, calculation of transmittance, and calculation of visibility. The experimental results show that the proposed night road visibility monitoring method based on video images can effectively realize real-time monitoring of night road visibility, effectively overcome the inherent defects of traditional methods, and the constructed night visibility monitoring framework can realize high-precision visibility calculation, and has broad application prospects. Through adaptive threshold and adaptive filtering technology, the improved dark channel algorithm has shown competitive advantages in both image quality index and practical application effect, especially in noise suppression and edge preservation. However, under extreme illumination conditions, the algorithm still has room for improvement in the processing of the strong light source region, and the dark channel prior may lead to bias in the transmission estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Animagus完成签到,获得积分10
刚刚
2秒前
丘比特应助Coke采纳,获得30
3秒前
wanci应助Coke采纳,获得10
3秒前
FashionBoy应助Coke采纳,获得10
3秒前
顾矜应助Coke采纳,获得20
3秒前
4秒前
5秒前
T拐拐发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
7秒前
月半发布了新的文献求助10
7秒前
7秒前
8秒前
silin发布了新的文献求助10
10秒前
轻幕飞扬完成签到,获得积分10
10秒前
kxawyy发布了新的文献求助30
10秒前
sjc完成签到,获得积分10
13秒前
周杰伦发布了新的文献求助10
13秒前
ma发布了新的文献求助10
13秒前
xingkongdan完成签到 ,获得积分10
13秒前
hsy309完成签到,获得积分10
14秒前
英俊小美完成签到,获得积分10
14秒前
silin完成签到,获得积分10
19秒前
烟花应助jim采纳,获得10
20秒前
爆米花应助ma采纳,获得10
21秒前
22秒前
25秒前
25秒前
zyj发布了新的文献求助10
27秒前
积极的蘑菇完成签到 ,获得积分10
29秒前
maomao39029完成签到,获得积分10
32秒前
32秒前
32秒前
32秒前
yushan关注了科研通微信公众号
33秒前
量子星尘发布了新的文献求助10
33秒前
傻傻的乌冬面完成签到,获得积分20
33秒前
pxh发布了新的文献求助10
35秒前
enli发布了新的文献求助20
35秒前
jim发布了新的文献求助10
35秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865308
求助须知:如何正确求助?哪些是违规求助? 3407575
关于积分的说明 10654958
捐赠科研通 3131601
什么是DOI,文献DOI怎么找? 1727202
邀请新用户注册赠送积分活动 832173
科研通“疑难数据库(出版商)”最低求助积分说明 780189