清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning-Based Model for Prediction of Early Post-Stroke Fatigue in Patients With Stroke: A Longitudinal Study

冲程(发动机) 医学 布里氏评分 物理疗法 接收机工作特性 物理医学与康复 萧条(经济学) 生活质量(医疗保健) 机器学习 内科学 机械工程 工程类 护理部 计算机科学 经济 宏观经济学
作者
Yu Wu,Dong Zhou,Lovel Fornah,Jian Liu,Jun Zhao,Shicai Wu
出处
期刊:Neurorehabilitation and Neural Repair [SAGE Publishing]
标识
DOI:10.1177/15459683251329893
摘要

BackgroundPost-stroke fatigue, as one of the long-lasting physical and mental symptoms accompanying stroke survivors, will seriously affect the daily living ability and quality of life of stroke patients.ObjectiveThe aim of this study was to develop machine learning (ML) algorithms to predict early post-stroke fatigue among patients with stroke.MethodsA longitudinal study of 702 patients with stroke followed for 3 months. Twenty-three clinical features were obtained from medical records and questionnaires before discharge. Early post-stroke fatigue was assessed using the Fatigue Severity Scale. The dataset was randomly divided into a training group (70%) and an internal validation group (30%), applied oversampling, 10-fold cross-validation, and grid search to optimize the hyperparameter. Feature selection using the Least Absolute Shrinkage and Selection Operator (LASSO) regression. Sixteen ML algorithms were performed to predict early post-stroke fatigue in this study. Accuracy, precision, recall, F1 score, area under the receiver operating characteristic curve (AUC), and brier score were used to evaluate the models performance.ResultsAmong the 16 ML algorithms, the Bagging model was the optimal model for predicting early post-stroke fatigue in patients with stroke (AUC = 0.8479, accuracy = 0.7518, precision = 0.5741, recall = 0.7209, F1 score = 0.6392, brier score = 0.1490). The feature selection based on LASSO revealed that risk factors for early post-stroke fatigue in patients with stroke included anxiety, sleep, social support, family care, pain, depression, neural-functional defect, quit/no drinking, balance function, type of stroke, sex, heart disease, smoking, and hemiplegia.ConclusionsIn this study, the Bagging model proved to be effective in predicting early post-stroke fatigue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
胖虎完成签到 ,获得积分10
10秒前
liuzf发布了新的文献求助10
12秒前
万默完成签到 ,获得积分10
16秒前
TZMY发布了新的文献求助10
18秒前
TZMY完成签到,获得积分10
27秒前
29秒前
ppf发布了新的文献求助10
35秒前
周肥发布了新的文献求助10
38秒前
小白白完成签到 ,获得积分10
40秒前
贪玩的网络完成签到 ,获得积分10
40秒前
慕青应助liuzf采纳,获得10
40秒前
wenhuanwenxian完成签到 ,获得积分10
43秒前
charliechen完成签到 ,获得积分10
46秒前
Ava应助周肥采纳,获得10
46秒前
BCKT完成签到,获得积分10
49秒前
调皮黑猫应助Kevin采纳,获得30
53秒前
57秒前
谭玲慧完成签到 ,获得积分10
57秒前
王波完成签到 ,获得积分10
1分钟前
花誓lydia完成签到 ,获得积分10
1分钟前
gincle完成签到 ,获得积分10
1分钟前
1分钟前
xy完成签到 ,获得积分10
1分钟前
1分钟前
yujie完成签到 ,获得积分10
1分钟前
fang完成签到,获得积分10
1分钟前
wuludie应助Microbiota采纳,获得10
1分钟前
1分钟前
1分钟前
嘻嘻哈哈发布了新的文献求助10
1分钟前
打打应助不灭采纳,获得10
1分钟前
yorkin完成签到 ,获得积分10
1分钟前
蓝天小小鹰完成签到 ,获得积分10
1分钟前
heija完成签到,获得积分10
1分钟前
wmszhd完成签到,获得积分10
1分钟前
薄荷完成签到,获得积分10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得30
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792550
求助须知:如何正确求助?哪些是违规求助? 3336777
关于积分的说明 10282126
捐赠科研通 3053544
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468