Identification of Novel Fourth-Generation Allosteric Inhibitors Targeting Inactive State of EGFR T790M/L858R/C797S and T790M/L858R Mutations: A Combined Machine Learning and Molecular Dynamics Approach

T790米 变构调节 鉴定(生物学) 化学 分子动力学 突变 癌症研究 计算生物学 生物化学 生物 受体 基因 植物 计算化学 克拉斯
作者
K. Bhanja,Niladri Patra
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
标识
DOI:10.1021/acs.jpcb.4c07651
摘要

Targeted therapy with an allosteric inhibitor (AIs) is an important area of research in patients with epidermal growth factor receptor (EGFR) mutations. Current treatment of nonsmall cell lung cancer patients with EGFR mutations using orthosteric inhibitors faces challenges like resistance and stopping over phosphorylation. Notably AIs have been introduced to overcome this resistance and increase inhibitory potency that binds to pockets other than the ATP-binding site (orthosteric site). Recently, fourth-generation AIs, EAI045, have been discovered to potently and selectively inhibit various EGFR mutations but limited antiproliferative effects in the absence of the antibody cetuximab. The purpose of this work is to identify nontoxic, potent small AIs through various screening pipelines and explore their molecular mechanism. In the discovery of AIs, structural similarity search, high-throughput virtual screening, and machine learning-guided QSAR modeling, several candidates were identified. Machine learning was employed to guide the QSAR model based on 2D descriptors and DFT-derived quantum chemical descriptors followed by a PCA reduction technique, which enabled the prediction of the biological activity (IC50) of screened drugs against various EGFR mutations such as T790M/L858R/C797S and T790M/L858R. In addition, multinanosecond (ns) and microsecond (μs) classical molecular dynamics (MD) simulations run on protein-ligand binding complex to check the stability of binding dynamics for T790M/L858R/C797S and T790M/L858R mutations with lower IC50 and higher docking score compounds. The molecular mechanics generalized Boltzmann surface area (MM/GBSA) calculation revealed that the five hit allosteric molecules for T790M/C797S/L858R and two for T790M/L858R mutations had a high binding affinity. The results were corroborated further by MM/GBSA employing the normal-mode analysis entropy method to perform additional screening. Furthermore, the compounds' efficacy was confirmed using path-dependent ligand unbinding free energy techniques such as Jarzynski averaged free energy profiles obtained from adaptive steered MD, relative residence time, and umbrella sampling simulations, which were compared to a reference inhibitor. However, path-independent alchemical approaches like streamlined alchemical free energy perturbation and binding free energy estimator 2 (BFEE2) were employed to validate the results and identify potent compounds. These findings pave the way to identification of novel potential fourth-generation AIs, which require further experimental validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
夏小夏完成签到,获得积分10
4秒前
波是猫完成签到,获得积分20
5秒前
6秒前
宁宁发布了新的文献求助30
7秒前
HX完成签到,获得积分10
7秒前
机智不乐发布了新的文献求助10
7秒前
SciGPT应助无风采纳,获得10
8秒前
9秒前
14秒前
15秒前
15秒前
15秒前
16秒前
慕青应助沉静的万天采纳,获得10
17秒前
18秒前
迷人的冥完成签到,获得积分10
18秒前
19秒前
19秒前
小橙完成签到 ,获得积分10
20秒前
zz发布了新的文献求助10
21秒前
xiaozi完成签到 ,获得积分10
21秒前
刘奇发布了新的文献求助10
21秒前
lxx完成签到 ,获得积分10
22秒前
欢喜的之桃完成签到,获得积分10
23秒前
23秒前
zoey发布了新的文献求助10
24秒前
Orange应助活泼的觅云采纳,获得10
26秒前
HJJHJH发布了新的文献求助30
27秒前
打打应助zoey采纳,获得10
30秒前
xia完成签到,获得积分10
31秒前
31秒前
动听靖发布了新的文献求助30
32秒前
慕青应助lonelylong采纳,获得50
34秒前
爆米花应助zz采纳,获得10
35秒前
35秒前
35秒前
36秒前
36秒前
CodeCraft应助碎冰蓝采纳,获得10
36秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802223
求助须知:如何正确求助?哪些是违规求助? 3348011
关于积分的说明 10335830
捐赠科研通 3063897
什么是DOI,文献DOI怎么找? 1682293
邀请新用户注册赠送积分活动 807968
科研通“疑难数据库(出版商)”最低求助积分说明 763997