亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Path planning for autonomous vehicles under multi-road condition based on improved artificial potential field with A* algorithm

运动规划 势场 路径(计算) 领域(数学) 计算机科学 算法 人工智能 工程类 数学 机器人 地质学 地球物理学 程序设计语言 纯数学
作者
Zhifei Wu,Fang Liu,Jiacheng Zhou,Fei Fan,Zhen Wang
标识
DOI:10.1177/09544070251328138
摘要

Path planning for autonomous vehicles is a key technology in the field of intelligent transportation. In this paper, an improved Artificial Potential Field (APF) with A* algorithm is proposed for dynamic path planning of autonomous vehicles under multi-road conditions. Firstly, for the defects of APF algorithm, distance impact factor to the target and minimum gravitational value are respectively added for the APF potential field. Moreover, vehicle obstacle avoidance and lane-changing are realized by combining APF with Safety Distance Model (SDM-APF). Secondly, the heuristic function of the A* algorithm is improved to reduce redundant path points and enhance planning efficiency. The improved A* algorithm is integrated with the SDM-APF algorithm to further improve path planning performance. Finally, a traffic map of a multi-road scenario is designed for simulation using graphical user interface. The simulation results demonstrate that the improved A* algorithm outperforms the traditional approach, achieving a 2.5% reduction in redundant points and a 9.2% decrease in average intersection angles, along with a 2.0% increase in planning efficiency. The improved SDM-APF algorithm also demonstrates exceptional lane-centering capability and target accessibility, exhibiting almost 0 path volatility. From the initial point to the destination, even if the road conditions are varied and complex, the hybrid A*-SDM-APF algorithm can still successfully reach the destination, and ensure safety, smoothness, and stability of the vehicle trajectories. The simulation results provide strong evidence for the effectiveness and superiority of the algorithmic improvements and combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
30秒前
神勇朝雪完成签到,获得积分10
33秒前
tufei完成签到,获得积分10
53秒前
1分钟前
Hazel发布了新的文献求助30
1分钟前
科研通AI5应助Cccc小懒采纳,获得10
1分钟前
DDIAO完成签到,获得积分10
1分钟前
1分钟前
沈祖豪发布了新的文献求助10
1分钟前
逝月完成签到,获得积分10
1分钟前
1分钟前
风笛完成签到 ,获得积分10
1分钟前
Orange应助沈祖豪采纳,获得10
2分钟前
2分钟前
科研通AI5应助风一样的我采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
俭朴蜜蜂完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
沈祖豪发布了新的文献求助10
3分钟前
大个应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
奔跑的蒲公英完成签到,获得积分10
5分钟前
Kevin完成签到,获得积分10
6分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
Jacob完成签到 ,获得积分10
6分钟前
maher完成签到,获得积分10
6分钟前
jyy完成签到,获得积分10
7分钟前
今年要发sci完成签到 ,获得积分10
7分钟前
今年要发sci关注了科研通微信公众号
7分钟前
suibiao完成签到 ,获得积分10
8分钟前
852应助机灵笑蓝采纳,获得10
9分钟前
9分钟前
机灵笑蓝完成签到,获得积分10
9分钟前
机灵笑蓝发布了新的文献求助10
9分钟前
9分钟前
北极光发布了新的文献求助10
9分钟前
9分钟前
9分钟前
牛八先生完成签到,获得积分10
9分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798486
求助须知:如何正确求助?哪些是违规求助? 3343966
关于积分的说明 10318150
捐赠科研通 3060562
什么是DOI,文献DOI怎么找? 1679670
邀请新用户注册赠送积分活动 806731
科研通“疑难数据库(出版商)”最低求助积分说明 763323