PFedCS: A Personalized Federated Learning Method for Enhancing Collaboration among Similar Classifiers

计算机科学 人工智能 机器学习
作者
Siyuan Wu,Yongzhe Jia,Bowen Liu,Haolong Xiang,Xiaolong Xu,Wanchun Dou
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:39 (20): 21572-21580
标识
DOI:10.1609/aaai.v39i20.35460
摘要

Personalized federated learning (PFL) has recently gained significant attention for its capability to address the poor convergence performance on highly heterogeneous data and the lack of personalized solutions of traditional federated learning (FL). Existing mainstream approaches either perform personalized aggregation based on a specific model architecture to leverage global knowledge or achieve personalization by exploiting client similarities. However, the former overlooks the discrepancies in client data distributions by indiscriminately aggregating all clients, while the latter lacks fine-grained collaboration of classifiers relevant to local tasks. In view of this challenge, we propose a Personalized Federated learning method for Enhancing Collaboration among Similar Classifiers (PFedCS), which aims at improving the client’s accuracy on local tasks. Concretely, it is achieved by leveraging awareness of the client classifier similarities to address the above problems. By iteratively measuring the distance of the classifier parameters between clients and clustering with each client as a cluster center, the central server adaptively identifies the collaborating clients with similar data distributions. In addition, a distance-constrained aggregation method is designed to generate customized collaborative classifiers to guide local training. As a result, extensive experimental evaluations conducted on three datasets demonstrate that our method achieves state-of-the-art performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Singularity应助sdvsd采纳,获得10
8秒前
zhenya完成签到,获得积分10
10秒前
慕青应助安白采纳,获得10
14秒前
17秒前
Auston_zhong应助QR采纳,获得10
19秒前
顾矜应助勤恳的宛菡采纳,获得10
19秒前
pagoda发布了新的文献求助50
19秒前
斤斤完成签到,获得积分10
21秒前
我是老大应助科研通管家采纳,获得10
24秒前
研友_VZG7GZ应助科研通管家采纳,获得10
24秒前
桐桐应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
打打应助科研通管家采纳,获得10
24秒前
乐乐应助科研通管家采纳,获得10
25秒前
领导范儿应助科研通管家采纳,获得10
25秒前
呆萌鱼应助科研通管家采纳,获得10
25秒前
PageSeo2应助科研通管家采纳,获得10
25秒前
summer应助科研通管家采纳,获得10
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
25秒前
ding应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
25秒前
SciGPT应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
Cat应助科研通管家采纳,获得20
25秒前
至拙发布了新的文献求助10
28秒前
Komorebi完成签到,获得积分10
28秒前
30秒前
bc应助KennyS采纳,获得30
34秒前
科研通AI2S应助chen采纳,获得10
34秒前
37秒前
绿叶发布了新的文献求助20
37秒前
ye完成签到,获得积分10
37秒前
fancy完成签到 ,获得积分10
39秒前
41秒前
Auston_zhong应助月亮采纳,获得10
42秒前
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323655
关于积分的说明 10215320
捐赠科研通 3038839
什么是DOI,文献DOI怎么找? 1667661
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339