生物
生物扩散
遗传多样性
按距离隔离
进化生物学
遗传变异
人口
遗传结构
壁炉试验
局部适应
遗传学
群体遗传学
基因
人口学
社会学
作者
Prabodh Kumar Bajpai,Arye Harel,Jotham Ziffer‐Berger,Yoni Waitz,Klaus Mummenhoff,Oz Barazani
摘要
Abstract Background and aims Morphological differences between the two genetically close wild radishes, Raphanus raphanistrum and R. pugioniformis, include differences in fruit structure that influence their dispersal ability and within population spatial structure. Here, we tested within- and among-populations genetic variation, hypothesizing that (i) short-distance dispersal of heavy fruits in R. pugioniformis provided opportunities for local adaptions, while (ii) long-distances of single-seeded diaspores increase migration rates in R. raphanistrum, resulting in closer genetic distances among populations. Methods Populations were mapped along a geographical gradient in the eastern Mediterranean, and genotyping-by-sequencing (GBS) was employed to assess population genetic structure. Population genetic variation was analyzed using genetic diversity parameters, pairwise genetic differentiation coefficients, Mantel tests, migration rates (MR), and ADMIXTURE analyses. Furthermore, SNP detection was utilized to identify loci associated with local adaptations. Key Results The average values of migration rates were similar in the two species, and non-synonymous SNP loci in CDS regions of R. raphanistrum (n=12) and R. pugioniformis (n=7) were well associated with directional selection. However, the genetic diversity parameters, isolation-by-distance Mantel tests, PCoA, and ADMIXTURE analyses indicated higher genetic differentiation among populations of R. pugioniformis than among populations of R. raphanistrum. Furthermore, a higher number of loci in R. pugioniformis than in R. raphanistrum (12 vs. 3 SNP outlier loci, respectively) were associated with average annual rainfall, the most prominent environmental parameter in the east Mediterranean. Conclusions The results support the hypothesis that long-distance dispersal contributes to lower genetic diversity in populations of R. raphanistrum compared to R. pugioniformis. Considering that the distribution range of R. raphanistrum is relatively homogenous, whereas R. pugioniformis is scattered across varying topographical and climatic gradients, the results of this genome scan highlight the significant role of the environment in adaptive inter- and intra-species genetic variation in these two genetically-close species.
科研通智能强力驱动
Strongly Powered by AbleSci AI