已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Design of an enhanced fuzzy neural network-based high-dimensional information decision-making model for supply chain management in intelligent warehouses

计算机科学 供应链 人工神经网络 决策模型 供应链管理 控制论 模糊逻辑 人工智能 数据仓库 运筹学 数据挖掘 业务 工程类 营销
作者
Fangyuan Tian,D. H. Yuan
出处
期刊:Kybernetes [Emerald (MCB UP)]
被引量:1
标识
DOI:10.1108/k-09-2024-2603
摘要

Purpose This paper aims to optimize supply chain information decision-making systems to better manage complex, high-dimensional and uncertain information through the integration of fuzzy logic and neural network technology. Design/methodology/approach A framework based on fuzzy logic reasoning is developed to address empirical issues in traditional supply chain systems. Subsequently, an innovative radial basis function-dynamic fuzzy neural network (RBF-DFNN) model is constructed, enhancing the system’s capability to interpret uncertain information. This model retains the advantages of traditional dynamic fuzzy neural networks (DFNN) while introducing an anti-fuzzy layer and optimizing the membership function and T-paradigm layers. Findings The RBF-DFNN model leads to the creation of a high-dimensional information decision-making model for supply chains. Experimental results indicate that this model effectively utilizes the K-medoids clustering algorithm to accurately capture the high-dimensional characteristics and intrinsic correlations of supply chain data. Parameter optimization significantly improves the model’s performance, with the root mean squared error (RMSE) and mean absolute error (MAE) enhanced, resulting in coefficients of determination rising from 95.6 and 97.8–99.1% compared to STPF-AIMM and ANFIS networks. Originality/value This study contributes to the advancement of supply chain management by developing a highly intelligent and refined decision-making model, enhancing the intelligence level of intelligent storage systems and promoting more sophisticated supply chain operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NiceSunnyDay完成签到 ,获得积分10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
充电宝应助认真凝安采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
kk_1315完成签到,获得积分0
1秒前
chigga发布了新的文献求助10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
杨远杰完成签到 ,获得积分10
2秒前
2秒前
所所应助HJX采纳,获得10
2秒前
老师心腹大患完成签到,获得积分10
2秒前
pikachu完成签到,获得积分10
2秒前
清新的安白完成签到,获得积分10
2秒前
wren完成签到,获得积分0
2秒前
3秒前
阿超完成签到,获得积分10
3秒前
眼中星光完成签到,获得积分10
3秒前
庚辰梦秋完成签到,获得积分10
3秒前
wsyiming完成签到,获得积分10
3秒前
陈杰完成签到,获得积分10
3秒前
17完成签到,获得积分10
3秒前
苹果大侠完成签到 ,获得积分10
3秒前
科研的熊完成签到,获得积分10
3秒前
qianzhihe完成签到,获得积分10
4秒前
认真的代柔完成签到,获得积分10
4秒前
九九我应助genius采纳,获得10
4秒前
大小罐子完成签到,获得积分10
4秒前
Ru完成签到 ,获得积分10
4秒前
Cope完成签到 ,获得积分10
4秒前
网安小趴菜完成签到,获得积分10
5秒前
景__完成签到,获得积分0
5秒前
chigga完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482025
求助须知:如何正确求助?哪些是违规求助? 4583040
关于积分的说明 14388066
捐赠科研通 4511873
什么是DOI,文献DOI怎么找? 2472617
邀请新用户注册赠送积分活动 1458890
关于科研通互助平台的介绍 1432284

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10