User portrait analysis on Chinese diabetes online health platforms: an information processing perspective

纵向 透视图(图形) 计算机科学 万维网 情报检索 数据科学 人机交互 人工智能 艺术 艺术史
作者
Yang Zhang,Yunyun Gao,Tingting Wu,Shuai Zhang
出处
期刊:Online Information Review [Emerald Publishing Limited]
卷期号:49 (5): 1046-1062 被引量:1
标识
DOI:10.1108/oir-11-2024-0728
摘要

Purpose The objective of this research is to investigate the characteristics of information interaction among users of the largest online health platform for diabetes in China from an information processing viewpoint, determine the stages of information processing among users and reveal the variations in information requirements and behavioral patterns across different user groups at various processing levels, ultimately creating a user segmentation labeling system to enhance user portrait. Design/methodology/approach This study adopts a deep learning BILSTM-CNN classification model to identify user information processing characteristics, and then classify users into three groups. The LDA topic model is employed to analyze the information needs of these groups. Findings This research utilizes a BILSTM-CNN combined deep learning model, showcasing enhanced effectiveness in classifying the degree of information processing in user comments. Our model also increases the accuracy and stability of classification compared to conventional deep learning models, achieving an F1 score of 95.0% (F1 Score: CNN 92%, LSTM 94%, BILSTM 94%). Based on the classification results, users were grouped and different groups of diabetes users showed differences in information needs, information behavior and natural attributes. Originality/value Taking information processing as an entry point, this study deeply mined the user behavior data of China’s largest diabetes online health platform, identifying the information processing characteristics present in user comments and categorizing users into groups reflecting varying depths of information processing. Based on the multi-dimensional data analysis, we innovatively constructed a refined user labeling system, and finally depicted a complete user portrait. This study not only enriches the theoretical framework of cognitive processing and user portrait but also contributes to research on personalized recommendations for online health platforms for diabetes. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/OIR-11-2024-0728.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
和谐的敏发布了新的文献求助10
刚刚
guan给guan的求助进行了留言
1秒前
2秒前
victorzou发布了新的文献求助10
3秒前
3秒前
3秒前
生动梦松应助BLUE采纳,获得30
4秒前
浅笑发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
7秒前
张雯思发布了新的文献求助10
8秒前
栾小鱼发布了新的文献求助10
8秒前
冰啊冰完成签到,获得积分10
8秒前
8秒前
情怀应助等风采纳,获得10
10秒前
彭于晏应助安静的幼旋采纳,获得10
11秒前
豪哥发布了新的文献求助10
11秒前
12秒前
努力努力发布了新的文献求助10
12秒前
pass完成签到,获得积分10
13秒前
浅笑完成签到,获得积分10
14秒前
英姑应助和谐的敏采纳,获得10
14秒前
胡超阳发布了新的文献求助10
14秒前
15秒前
17秒前
栾小鱼完成签到,获得积分10
18秒前
19秒前
paidaxing完成签到,获得积分10
19秒前
19秒前
冰啊冰发布了新的文献求助10
20秒前
李杰发布了新的文献求助10
20秒前
20秒前
NexusExplorer应助赵馨雨采纳,获得10
21秒前
果称发布了新的文献求助10
22秒前
科研通AI6应助努力努力采纳,获得10
23秒前
张雯思发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4739366
求助须知:如何正确求助?哪些是违规求助? 4090724
关于积分的说明 12654039
捐赠科研通 3800150
什么是DOI,文献DOI怎么找? 2098475
邀请新用户注册赠送积分活动 1123930
科研通“疑难数据库(出版商)”最低求助积分说明 999140