已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

User portrait analysis on Chinese diabetes online health platforms: an information processing perspective

纵向 透视图(图形) 计算机科学 万维网 情报检索 数据科学 人机交互 人工智能 艺术 艺术史
作者
Yang Zhang,Yunyun Gao,Tingting Wu,Shuai Zhang
出处
期刊:Online Information Review [Emerald (MCB UP)]
卷期号:49 (5): 1046-1062 被引量:2
标识
DOI:10.1108/oir-11-2024-0728
摘要

Purpose The objective of this research is to investigate the characteristics of information interaction among users of the largest online health platform for diabetes in China from an information processing viewpoint, determine the stages of information processing among users and reveal the variations in information requirements and behavioral patterns across different user groups at various processing levels, ultimately creating a user segmentation labeling system to enhance user portrait. Design/methodology/approach This study adopts a deep learning BILSTM-CNN classification model to identify user information processing characteristics, and then classify users into three groups. The LDA topic model is employed to analyze the information needs of these groups. Findings This research utilizes a BILSTM-CNN combined deep learning model, showcasing enhanced effectiveness in classifying the degree of information processing in user comments. Our model also increases the accuracy and stability of classification compared to conventional deep learning models, achieving an F1 score of 95.0% (F1 Score: CNN 92%, LSTM 94%, BILSTM 94%). Based on the classification results, users were grouped and different groups of diabetes users showed differences in information needs, information behavior and natural attributes. Originality/value Taking information processing as an entry point, this study deeply mined the user behavior data of China’s largest diabetes online health platform, identifying the information processing characteristics present in user comments and categorizing users into groups reflecting varying depths of information processing. Based on the multi-dimensional data analysis, we innovatively constructed a refined user labeling system, and finally depicted a complete user portrait. This study not only enriches the theoretical framework of cognitive processing and user portrait but also contributes to research on personalized recommendations for online health platforms for diabetes. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/OIR-11-2024-0728.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Uu完成签到 ,获得积分10
1秒前
NexusExplorer应助自然的乌龟采纳,获得10
2秒前
3秒前
于雷是我发布了新的文献求助10
6秒前
优秀的莞完成签到,获得积分10
6秒前
7秒前
9秒前
蔡小娜完成签到,获得积分20
11秒前
11秒前
WMR发布了新的文献求助10
12秒前
12秒前
蔡小娜发布了新的文献求助10
15秒前
16秒前
17秒前
叽里呱啦完成签到 ,获得积分10
17秒前
ZOE应助clientprogram采纳,获得30
18秒前
18秒前
浮游应助paulmichael采纳,获得10
19秒前
芝士奶酪完成签到 ,获得积分10
19秒前
kimi发布了新的文献求助10
21秒前
Xieyusen发布了新的文献求助10
23秒前
ybheart发布了新的文献求助10
23秒前
左耳钉应助火羊宝采纳,获得10
24秒前
24秒前
kaili完成签到 ,获得积分10
30秒前
欣喜惜海完成签到 ,获得积分10
30秒前
31秒前
Echo完成签到 ,获得积分10
32秒前
小二郎应助王金娥采纳,获得10
33秒前
33秒前
大龙哥886应助科研通管家采纳,获得10
33秒前
浮游应助科研通管家采纳,获得10
33秒前
浮游应助科研通管家采纳,获得10
33秒前
大龙哥886应助科研通管家采纳,获得10
34秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
小二郎应助科研通管家采纳,获得10
34秒前
大个应助科研通管家采纳,获得10
34秒前
北地风情应助科研通管家采纳,获得10
34秒前
orixero应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426055
求助须知:如何正确求助?哪些是违规求助? 4539751
关于积分的说明 14170500
捐赠科研通 4457568
什么是DOI,文献DOI怎么找? 2444607
邀请新用户注册赠送积分活动 1435561
关于科研通互助平台的介绍 1412983