亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An interpretable machine learning model based on optimal feature selection for identifying CT abnormalities in patients with mild traumatic brain injury

医学 创伤性脑损伤 特征选择 选择(遗传算法) 特征(语言学) 人工智能 机器学习 医疗急救 医学物理学 精神科 计算机科学 语言学 哲学
作者
Yuling Pan,Mengqi Wei,Mengyuan Jin,Ying Liang,Tianjiao Yi,Jiancheng Tu,Shimin Wu,Fang Hu,Chunzi Liang
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:82: 103192-103192
标识
DOI:10.1016/j.eclinm.2025.103192
摘要

Minor head trauma is a frequent cause of emergency department visits, early identification and prediction of mild traumatic brain injury (mTBI) patients with abnormal brain lesions are vital for minimizing unnecessary computed tomography (CT) scans, reducing radiation exposure, and ensuring timely effective treatment and care. This study aims to develop and validate an interpretable machine learning (ML) prediction model using routine laboratory data for guiding clinical decisions on CT scan use in mTBI patients. We conducted a multicentre study in China including data from January 2019 to July 2024. Our study included three patient cohorts: a retrospective training cohort (654 patients for training and 163 for internal testing) and two prospective validation cohorts (86 internal and 290 external patients). Fifty-one routine clinical laboratory characteristics, readily available from the electronic medical record (EMR) system within the first 24 h of admission, were collected. Seven ML algorithms were trained to develop predictive models, with the random forest (RF) algorithm used to optimize key feature combinations. Model predictive performance was evaluated using metrics such as the area under the receiver operating characteristic curve (AUC), positive predictive value (PPV), and F1 scores. The SHapley Additive exPlanation (SHAP) was applied to interpret the final model, while decision curve analysis (DCA) was used to assess the clinical net benefit. In the derivation cohort, 599 (73.3%) patients had normal CT scans and 218 (26.7%) had abnormal CT scans. The Gradient boosting classifier (GBC) model performed best among the seven ML models, with an AUC of 0.932 (95% CI: 0.900-0.963). After reducing features to 21 (8 biochemical test indicators, 3 coagulation markers, and 10 complete blood cell count indicators) according to feature importance rank, an explainable GBC-final model was established. The final model accurately predicted mTBI patients with abnormal CT in both internal (AUC 0.926, 95% CI: 0.893-0.958) and external (AUC 0.904, 95% CI: 0.835-0.973) validation cohorts. In the prospective cohort, final GBC model achieved AUC of 0.885 (95% CI: 0.753-1.000) and was significantly superior to traditional TBI biomarkers GFAP (AUC: 0.745) and PGP9.5 (AUC: 0.794). DCA revealed that the final model offered greater net benefits than "full intervention" or "no intervention" strategies within a probability threshold range of 0.16-0.93. SHAP analysis identified D-dimer levels, absolute lymphocyte and neutrophil counts, and hematocrit as key high-risk features. Our optimal feature selection-based ML model accurately and reliably predicts CT abnormalities in mTBI patients using routine test data. By addressing clinicians' concerns regarding transparency and decision-making through SHAP and DCA analyses, we strengthen the potential clinical applicability of our ML model. The Natural Science Foundation of Hubei Province, high-level Talent Research Startup Funding of Hubei University of Chinese Medicine, Wuhan Health and Family Planning Scientific Research Fund Project of Hubei Province, and Machine Learning-based Intelligent Diagnosis System for AFP-negative Liver Cancer Project.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mostspecial完成签到,获得积分10
2秒前
多味花生发布了新的文献求助10
8秒前
13秒前
碧蓝的蜻蜓完成签到 ,获得积分10
16秒前
492357816完成签到,获得积分10
16秒前
绝尘发布了新的文献求助10
17秒前
18秒前
rrrrrrry发布了新的文献求助20
24秒前
卡卡罗特先森完成签到 ,获得积分10
32秒前
快乐寄风完成签到 ,获得积分10
40秒前
可爱的函函应助袁青寒采纳,获得10
43秒前
善学以致用应助袁青寒采纳,获得10
43秒前
小二郎应助袁青寒采纳,获得10
43秒前
星辰大海应助袁青寒采纳,获得10
43秒前
隐形曼青应助袁青寒采纳,获得10
43秒前
Jasper应助袁青寒采纳,获得10
43秒前
44秒前
清脆代桃完成签到 ,获得积分10
46秒前
跳跃卿完成签到 ,获得积分10
47秒前
完美世界应助大方千山采纳,获得10
53秒前
咸鱼完成签到,获得积分10
55秒前
58秒前
木木完成签到 ,获得积分10
58秒前
小刘恨香菜完成签到 ,获得积分10
1分钟前
三幅画发布了新的文献求助10
1分钟前
1分钟前
大方千山发布了新的文献求助10
1分钟前
大个应助大方千山采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
1分钟前
三土完成签到,获得积分10
1分钟前
zho应助沁阳采纳,获得50
1分钟前
大方千山完成签到,获得积分10
1分钟前
小张完成签到 ,获得积分10
1分钟前
HEIKU应助三土采纳,获得10
1分钟前
w1x2123完成签到,获得积分10
1分钟前
XinEr完成签到 ,获得积分10
1分钟前
满唐完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779029
求助须知:如何正确求助?哪些是违规求助? 3324712
关于积分的说明 10219533
捐赠科研通 3039750
什么是DOI,文献DOI怎么找? 1668400
邀请新用户注册赠送积分活动 798648
科研通“疑难数据库(出版商)”最低求助积分说明 758487