Boltz-2: Towards Accurate and Efficient Binding Affinity Prediction

计算机科学 化学 计算生物学 数学 计量经济学 生物
作者
Saro Passaro,Gabriele Corso,Jeremy Wohlwend,Mateo Reveiz,Stephan Thaler,Vignesh Ram Somnath,Noah Getz,Tally Portnoi,Julien Roy,H. Stärk,David Kwabi-Addo,Dominique Beaini,Tommi Jaakkola,Regina Barzilay
标识
DOI:10.1101/2025.06.14.659707
摘要

Accurately modeling biomolecular interactions is a central challenge in modern biology. While recent advances, such as AlphaFold3 and Boltz-1, have substantially improved our ability to predict biomolecular complex structures, these models still fall short in predicting binding affinity, a critical property underlying molecular function and therapeutic efficacy. Here, we present Boltz-2, a new structural biology foundation model that exhibits strong performance for both structure and affinity prediction. Boltz-2 introduces controllability features including experimental method conditioning, distance constraints, and multi-chain template integration for structure prediction, and is, to our knowledge, the first AI model to approach the performance of free-energy perturbation (FEP) methods in estimating small molecule-protein binding affinity. Crucially, it achieves strong correlation with experimental readouts on many benchmarks, while being at least 1000 × more computationally efficient than FEP. By coupling Boltz-2 with a generative model for small molecules, we demonstrate an effective workflow to find diverse, synthesizable, high-affinity binders, as estimated by absolute FEP simulations on the TYK2 target. To foster broad adoption and further innovation at the intersection of machine learning and biology, we are releasing Boltz-2 weights, inference, and training code 1 under a permissive open license, providing a robust and extensible foundation for both academic and industrial research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助50
刚刚
研友_VZG7GZ应助muzi1998采纳,获得10
1秒前
1秒前
海锅的小迷妹完成签到,获得积分10
1秒前
情怀应助小如要努力采纳,获得10
1秒前
1秒前
小朋友关注了科研通微信公众号
2秒前
趙途嘵生发布了新的文献求助10
2秒前
seven完成签到,获得积分10
3秒前
4秒前
ll发布了新的文献求助10
4秒前
5秒前
万能图书馆应助香查朵采纳,获得10
5秒前
zhang完成签到,获得积分10
6秒前
7秒前
7秒前
我要留学应助wandering采纳,获得10
7秒前
8秒前
8秒前
9秒前
11秒前
xxsnn发布了新的文献求助10
12秒前
12秒前
无花果应助吱吱采纳,获得10
13秒前
lyz发布了新的文献求助20
13秒前
踏实的亦凝完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
15秒前
机灵易梦完成签到,获得积分10
16秒前
17秒前
wwq发布了新的文献求助10
17秒前
情怀应助踏实的亦凝采纳,获得10
19秒前
作风作雨关注了科研通微信公众号
19秒前
19秒前
19秒前
mysong发布了新的文献求助10
20秒前
20秒前
20秒前
烤冷面应助糊涂的缘分采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4883249
求助须知:如何正确求助?哪些是违规求助? 4168868
关于积分的说明 12935437
捐赠科研通 3929220
什么是DOI,文献DOI怎么找? 2155947
邀请新用户注册赠送积分活动 1174324
关于科研通互助平台的介绍 1079106