Artificial Intelligence in Cardiovascular Imaging and Interventional Cardiology: Emerging Trends and Clinical Implications

介入心脏病学 医学 临床心脏病学 心脏病学 内科学 医学物理学
作者
Maryam Alsharqi,Elazer R. Edelman
出处
期刊:Journal of the Society for Cardiovascular Angiography & Interventions [Elsevier]
卷期号:4 (3): 102558-102558
标识
DOI:10.1016/j.jscai.2024.102558
摘要

Artificial intelligence (AI) has revolutionized the field of cardiovascular imaging, serving as a unifying force that brings together multiple modalities under a single platform. The utility of noninvasive imaging ranges from diagnostic assessment and guiding interventions to prognostic stratification. Multimodality imaging has demonstrated important potential, particularly in patients with heterogeneous diseases, such as heart failure and atrial fibrillation. Facilitating complex interventional procedures requires accurate image acquisition and interpretation along with precise decision-making. The unique nature of interventional cardiology procedures benefiting from different imaging modalities presents an ideal target for the development of AI-assisted decision-making tools to improve workflow in the catheterization laboratory and personalize the need for transcatheter interventions. This review explores the advancements of AI in noninvasive cardiovascular imaging and interventional cardiology, addressing the clinical use and challenges of current imaging modalities, emerging trends, and promising applications as well as considerations for safe implementation of AI tools in clinical practice. Current practice has moved well beyond the question of whether we should or should not use AI in clinical health care settings. AI, in all its forms, has become deeply embedded in clinical workflows, particularly in cardiovascular imaging and interventional cardiology. It can, in the future, not only add precision and quantification but also serve as a means by which to fuse and link multimodalities together. It is only by understanding how AI techniques work, that the field can be harnessed for the greater good and avoid uninformed bias or misleading diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dabaozi完成签到,获得积分10
1秒前
无花果应助愤怒的茉莉采纳,获得10
1秒前
zm发布了新的文献求助10
1秒前
111发布了新的文献求助20
3秒前
李健的小迷弟应助涨涨涨采纳,获得10
4秒前
冰糖雪梨完成签到 ,获得积分10
4秒前
5秒前
HEROTREE完成签到 ,获得积分10
5秒前
可可发布了新的文献求助10
5秒前
柠檬发布了新的文献求助30
6秒前
甜蜜海蓝完成签到,获得积分10
6秒前
ikress发布了新的文献求助10
8秒前
心想事成组完成签到,获得积分10
8秒前
哈哈完成签到,获得积分10
14秒前
ikress完成签到,获得积分10
15秒前
20秒前
盛夏如花发布了新的文献求助10
20秒前
24秒前
24秒前
Persist6578完成签到 ,获得积分10
25秒前
Jasper应助tdtk采纳,获得10
27秒前
依依发布了新的文献求助10
29秒前
搬砖的羔羊完成签到,获得积分10
32秒前
雪白的紫翠应助盛夏如花采纳,获得10
32秒前
111完成签到,获得积分20
32秒前
34秒前
37秒前
zhencheng完成签到,获得积分10
39秒前
JIA发布了新的文献求助10
39秒前
大模型应助kyt采纳,获得10
40秒前
重要的千万完成签到,获得积分10
40秒前
Sci完成签到,获得积分10
41秒前
科研通AI5应助WX采纳,获得30
42秒前
yumiao发布了新的文献求助10
42秒前
42秒前
43秒前
61完成签到,获得积分10
44秒前
Persist完成签到 ,获得积分10
46秒前
幸运星发布了新的文献求助10
46秒前
赵焱峥完成签到,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782299
求助须知:如何正确求助?哪些是违规求助? 3327805
关于积分的说明 10233165
捐赠科研通 3042677
什么是DOI,文献DOI怎么找? 1670138
邀请新用户注册赠送积分活动 799658
科研通“疑难数据库(出版商)”最低求助积分说明 758876