Machine learning aided synthesis and screening of HER catalyst: Present developments and prospects

审查 生化工程 催化作用 机器学习 钥匙(锁) 计算机科学 纳米技术 人工智能 管理科学 数据科学 工程类 化学 材料科学 生物化学 政治学 计算机安全 法学
作者
M Karthikeyan,Durga Madhab Mahapatra,Abdul Syukor Abd Razak,Abdulaziz A.M. Abahussain,Baranitharan Ethiraj,Lakhveer Singh
出处
期刊:Catalysis Reviews-science and Engineering [Taylor & Francis]
卷期号:: 1-31 被引量:16
标识
DOI:10.1080/01614940.2022.2103980
摘要

There have been significant advancements in catalysis today, especially with the aid of artificial intelligence (AI). Understanding the relationship between the descriptors and catalytic performance and underlying principles is crucial for hydrogen evolution reaction (HER) catalysis. As of today, the usage and application of machine learning (ML) are soaring and there has been a phenomenal demand owing to its immense pattern recognition capability and optimization potential. Its applications in computational quantum mechanical modeling have inspired promising development in HER catalyst scrutiny and screening. The present communication reviews the general scheme of ML, data sources, and computational tools for HER catalyst screening and therefore provides a strong basis for its application. Furthermore, the analysis elucidates how ML algorithms are used for the prediction of a) adsorption energies, b) reaction descriptors, c) structure–property relationships, d) catalyst discovery, and e) synthesis conditions and reaction design of HER catalysts. Lastly, key constraints and the need for an integrative platform have been highlighted. Based on literature surveys, recent trends, material advancements, systems understanding, and key challenges in deploying ML tools, future directions with a road map have been provided for an evolved design and development in the case of HER catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
msk完成签到 ,获得积分10
4秒前
我爱物理发布了新的文献求助10
5秒前
我是科研小能手完成签到,获得积分10
5秒前
WSZXQ发布了新的文献求助10
6秒前
nullll完成签到,获得积分10
6秒前
黄紫红完成签到 ,获得积分10
8秒前
乐宝完成签到,获得积分10
8秒前
Cinderella完成签到,获得积分10
9秒前
9秒前
小飞棍完成签到,获得积分10
10秒前
海洋调完成签到,获得积分10
11秒前
壮观采文完成签到,获得积分10
12秒前
吃葡萄不吐葡萄皮完成签到 ,获得积分10
12秒前
念云完成签到,获得积分10
13秒前
执着的若灵完成签到,获得积分10
14秒前
无辜念文完成签到,获得积分10
16秒前
genomed应助丁元英采纳,获得10
16秒前
18秒前
隐形夜人完成签到,获得积分10
18秒前
Godric147发布了新的文献求助20
19秒前
量子星尘发布了新的文献求助10
19秒前
Wendy完成签到,获得积分10
20秒前
21秒前
21秒前
SciGPT应助科研通管家采纳,获得30
21秒前
你好应助科研通管家采纳,获得10
21秒前
mao应助科研通管家采纳,获得30
22秒前
dm应助科研通管家采纳,获得10
22秒前
若雨凌风应助科研通管家采纳,获得20
22秒前
今后应助科研通管家采纳,获得10
22秒前
l玖应助科研通管家采纳,获得10
22秒前
22秒前
wangwei应助科研通管家采纳,获得10
22秒前
dm应助科研通管家采纳,获得10
22秒前
FelixChen应助科研通管家采纳,获得10
22秒前
上官若男应助科研通管家采纳,获得10
22秒前
fst完成签到 ,获得积分10
22秒前
22秒前
赘婿应助科研通管家采纳,获得10
23秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3883932
求助须知:如何正确求助?哪些是违规求助? 3426217
关于积分的说明 10747497
捐赠科研通 3151073
什么是DOI,文献DOI怎么找? 1739223
邀请新用户注册赠送积分活动 839646
科研通“疑难数据库(出版商)”最低求助积分说明 784734