Machine Learning-Enabled Environmentally Adaptable Skin-Electronic Sensor for Human Gesture Recognition

手势 材料科学 手势识别 人工智能 软机器人 计算机科学 可穿戴计算机 可穿戴技术 机器人 机器学习 嵌入式系统
作者
Yongjun Song,Thi Huyen Nguyen,Dawoon Lee,Jaekyun Kim
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (7): 9551-9560 被引量:12
标识
DOI:10.1021/acsami.3c18588
摘要

Stretchable sensors have been widely investigated and developed for the purpose of human motion detection, touch sensors, and healthcare monitoring, typically converting mechanical/structural deformation into electrical signals. The viscoelastic strain of stretchable materials often results in nonlinear stress–strain characteristics over a broad range of strains, consequently making the stretchable sensors at the body joints less accurate in predicting and recognizing human gestures. Accurate recognition of human gestures can be further deteriorated by environmental changes such as temperature and humidity. Here, we demonstrated an environment-adaptable high stress–strain linearity (up to ε = 150%) and high-durability (>100,000 cycles) stretchable sensor conformally laminated onto the body joints for human gesture recognition. The serpentine configuration of our ionic liquid-based stretchable film enabled us to construct broad data sets of mechanical strain and temperature changes for machine learning-based gesture recognition. Signal recognition and training of distinct strains and environmental stimuli using a machine learning-based algorithm analysis successfully measured and predicted the joint motion in a temperature-changing environment with an accuracy of 92.86% (R-squared). Therefore, we believe that our serpentine-shaped ion gel-based stretchable sensor harmonized with machine-learning analysis will be a significant achievement toward environmentally adaptive and multianalyte sensing applications. Our proposed machine learning-enabled multisensor system may enable the development of future electronic devices such as wearable electronics, soft robotics, electronic skin, and human-machine interaction systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛爱花发布了新的文献求助10
3秒前
wanci应助无限的葶采纳,获得30
5秒前
5秒前
6秒前
科研通AI5应助笑点低的靳采纳,获得10
7秒前
8秒前
CR发布了新的文献求助10
8秒前
破忒头发布了新的文献求助30
10秒前
科研通AI5应助wdb采纳,获得10
11秒前
LZ发布了新的文献求助10
11秒前
11秒前
wangmp66发布了新的文献求助10
13秒前
破忒头完成签到,获得积分10
17秒前
18秒前
慕青应助牛爱花采纳,获得10
19秒前
21秒前
我是老大应助FanKun采纳,获得10
21秒前
聪慧海蓝完成签到 ,获得积分10
23秒前
wdb发布了新的文献求助10
24秒前
27秒前
wdb发布了新的文献求助10
27秒前
29秒前
31秒前
31秒前
mingjie发布了新的文献求助10
36秒前
36秒前
FanKun发布了新的文献求助10
36秒前
JasonSun完成签到,获得积分10
38秒前
41秒前
43秒前
45秒前
orixero应助kyJYbs采纳,获得10
45秒前
LLJ发布了新的文献求助10
46秒前
小犁牛完成签到 ,获得积分10
47秒前
无限的葶发布了新的文献求助30
48秒前
xt_489完成签到,获得积分10
48秒前
CodeCraft应助一笑而过采纳,获得10
48秒前
李橘子发布了新的文献求助10
50秒前
Akim应助专注的问筠采纳,获得10
51秒前
彭于晏应助枫月流年采纳,获得10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778901
求助须知:如何正确求助?哪些是违规求助? 3324431
关于积分的说明 10218443
捐赠科研通 3039495
什么是DOI,文献DOI怎么找? 1668204
邀请新用户注册赠送积分活动 798591
科研通“疑难数据库(出版商)”最低求助积分说明 758440