Detection of methane plumes using Sentinel-2 satellite images and deep neural networks trained on synthetically created label data

卫星 计算机科学 遥感 深度学习 卷积神经网络 人工智能 甲烷 环境科学 卫星图像 模式识别(心理学) 地质学 工程类 生态学 生物 航空航天工程
作者
Maciel Zortea,João Lucas de Sousa Almeida,Levente J. Klein,Alberto Costa Nogueira
标识
DOI:10.1109/bigdata59044.2023.10386482
摘要

Methane emissions from oil and gas infrastructure, wetlands, and livestock contribute to the greenhouse gas inventory. The analysis of satellite short-wave infrared imagery offers opportunities for screening large areas to detect methane leaks. Deep learning algorithms excel at analyzing these data, however, they require large annotated datasets for model calibration that are difficult to get. To overcome this limitation, we explore a methodology to spot methane plumes using deep binary classifiers trained on a large dataset of synthetically created methane plumes, customized for this specific task, using publicly available images of the Sentine1-2 satellites. To build the database, we simulate plume patterns using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) and use a simple stochastic model to account for reflectance attenuation due to methane in band 12 centered at 2190 nm. To help distinguish methane plumes from the image background, we compute a methane signature image based on a background subtraction technique. Once calibrated, the classification model is applied to image patches centered in the local minima of the methane signature within the satellite image, scoring a value ranging from 0 to 1 associated with the presence of a methane plume. We compare experimentally the general-purpose ResNet architecture and MethaNet, a domain-specific convolutional neural network, using simulated data. Then, we evaluate the feasibility of our approach in detecting large methane leaks at two study sites located in the Hassi Messaoud oil field in Algeria and the Permian Basin in the US, each covering an area of 0.25$\times$ 0.25 degrees. We found that ResNet is effective in identifying large, known methane plumes that were set aside for testing purposes. This method could be considered as a component of a solution for planning mitigation activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助fighting采纳,获得10
刚刚
痴情的博超应助cloud采纳,获得30
3秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得30
5秒前
Akim应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
6秒前
冰魂应助科研通管家采纳,获得10
6秒前
6秒前
顾矜应助慵懒的树采纳,获得10
7秒前
8秒前
8秒前
SciGPT应助HHH采纳,获得10
9秒前
10秒前
QXS发布了新的文献求助10
11秒前
lll发布了新的文献求助10
13秒前
14秒前
复杂的雨寒完成签到,获得积分20
19秒前
20秒前
lindahuang发布了新的文献求助10
20秒前
20秒前
Pengh完成签到,获得积分10
22秒前
失眠醉易应助HJY采纳,获得20
22秒前
CipherSage应助gb采纳,获得10
23秒前
24秒前
慵懒的树发布了新的文献求助10
25秒前
30秒前
31秒前
31秒前
32秒前
苔藓发布了新的文献求助10
32秒前
Elio发布了新的文献求助10
32秒前
33秒前
34秒前
左旋多巴完成签到,获得积分10
34秒前
35秒前
35秒前
yangyuanhao完成签到,获得积分10
35秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839942
求助须知:如何正确求助?哪些是违规求助? 3382151
关于积分的说明 10521656
捐赠科研通 3101616
什么是DOI,文献DOI怎么找? 1708201
邀请新用户注册赠送积分活动 822278
科研通“疑难数据库(出版商)”最低求助积分说明 773223