3D and 2D-QSAR Studies on Natural Flavonoids for Nitric Oxide Production Inhibitory Activity

数量结构-活动关系 化学 训练集 一氧化氮 稳健性(进化) 立体化学 生物化学 有机化学 人工智能 计算机科学 基因
作者
Chunqiang Wang,Yuzhu Fan,Minfan Pei,Chaoqun Yan,Taigang Liang
出处
期刊:Letters in Drug Design & Discovery [Bentham Science Publishers]
卷期号:21
标识
DOI:10.2174/0115701808179188231205064327
摘要

Background: Nitric oxide (NO), an important second messenger molecule, regulates numerous physiological responses, while excessive NO generates negative effects on the circulatory, nervous and immune systems. Recently, some natural flavonoids were reported to possess the capability of inhibiting LPS-induced NO production. To fully understand the nature of their own NO inhibitory activity, it is necessary to address the structural requirements of flavonoids as NO inhibitors. Objective: The objective of this work was to develop efficient QSAR models for predicting the NOinhibitory activity of new flavonoids and improving insights into the critical properties of the chemical structures that were required for the ideal NO production inhibitory activities. Methods: To provide insights into the structural basis of flavonoids as NO inhibitors, 3D quantitative structure-activity relationship (3D-QSAR) and 2D-QSAR models were developed on a dataset of 55 flavonoids using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA) and hologram quantitative structure-activity relationship (HQSAR) approaches. method: CoMFA, CoMSIA combining HQSAR methods were employed on a series of flavonoids to generate 3D and 2D-QSAR models. Results: The statistically significant models for CoMFA, CoMSIA and HQSAR resulted in crossvalidated coefficient (q2) values of 0.523, 0.572 and 0.639, non-cross-validated coefficient (r2) values of 0.793, 0.828 and 0.852, respectively. The robustness of these models was further affirmed using a test set of 18 compounds, which resulted in predictive correlation coefficients (r2 pred) of 0.968, 0.954 and 0.906. Furthermore, the models-derived contour maps were appraised for activity trends for the molecules analyzed. result: Comparative Molecular Field Analysis (CoMFA), Comparative Molecular Similarity Indices Analysis (CoMSIA) combining hologram quantitative structure-activity relationship (HQSAR) methods were employed on a series of flavonoids to generate 3D and 2D-QSAR models. Result: The obtained models can be used to predict the activities of new flavonoids and identify the key structural features affecting the NO inhibitory activities. Conclusion: The 3D and 2D-QSAR models constructed in this paper were efficient in estimating the NO inhibitory activities of flavonoids and facilitating the design of flavonoid-derived NO production inhibitors. other: none
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxyhh发布了新的文献求助10
2秒前
5秒前
6秒前
带领大家发布了新的文献求助10
7秒前
炮仗完成签到 ,获得积分10
10秒前
顺利绮波发布了新的文献求助10
10秒前
徐卷卷完成签到,获得积分10
10秒前
12秒前
kevin完成签到,获得积分10
12秒前
小郭完成签到,获得积分10
14秒前
导师老八完成签到,获得积分10
15秒前
17秒前
活在当下发布了新的文献求助10
17秒前
带领大家完成签到,获得积分10
17秒前
顺利绮波完成签到,获得积分10
18秒前
bkagyin应助range采纳,获得10
20秒前
小趴菜发布了新的文献求助10
21秒前
Lucas应助豆子采纳,获得10
23秒前
26秒前
导师老八发布了新的文献求助10
28秒前
z7777777完成签到,获得积分10
29秒前
小趴菜发布了新的文献求助10
32秒前
Deftfaker完成签到 ,获得积分10
36秒前
37秒前
39秒前
追寻飞风发布了新的文献求助10
40秒前
41秒前
丘比特应助科研通管家采纳,获得10
42秒前
李健应助科研通管家采纳,获得10
42秒前
赘婿应助科研通管家采纳,获得10
42秒前
科目三应助科研通管家采纳,获得10
42秒前
852应助科研通管家采纳,获得10
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
高高冰蝶应助科研通管家采纳,获得20
42秒前
42秒前
豆子发布了新的文献求助10
44秒前
满意一曲发布了新的文献求助10
48秒前
依依完成签到 ,获得积分10
48秒前
48秒前
Loik发布了新的文献求助10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781269
求助须知:如何正确求助?哪些是违规求助? 3326758
关于积分的说明 10228346
捐赠科研通 3041778
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799134
科研通“疑难数据库(出版商)”最低求助积分说明 758751