亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DenoiseST: A dual-channel unsupervised deep learning-based denoising method to identify spatial domains and functionally variable genes in spatial transcriptomics

空间分析 人工智能 计算机科学 模式识别(心理学) 聚类分析 判别式 无监督学习 机器学习 稳健性(进化) 数据挖掘 生物 基因 数学 统计 生物化学
作者
Yaxuan Cui,Ruheng Wang,Xin Zeng,Yang Cui,Z. P. Zhu,Kenta Nakai,Xiucai Ye,Tetsuya Sakurai,Leyi Wei
标识
DOI:10.1101/2024.03.04.583438
摘要

Abstract Spatial transcriptomics provides a unique opportunity for understanding cellular organization and function in a spatial context. However, spatial transcriptome exists the problem of dropout noise, exposing a major challenge for accurate downstream data analysis. Here, we proposed DenoiseST, a dual-channel unsupervised adaptive deep learning-based denoising method for data imputing, clustering, and identifying functionally variable genes in spatial transcriptomics. To leverage spatial information and gene expression profiles, we proposed a dual-channel joint learning strategy with graph convolutional networks to sufficiently explore both linear and nonlinear representation embeddings in an unsupervised manner, enhancing the discriminative information learning ability from the global perspectives of data distributions. In particular, DenoiseST enables the adaptively fitting of different gene distributions to the clustered domains and employs tissue-level spatial information to accurately identify functionally variable genes with different spatial resolutions, revealing their enrichment in corresponding gene pathways. Extensive validations on a total of 18 real spatial transcriptome datasets show that DenoiseST obtains excellent performance and results on brain tissue datasets indicate it outperforms the state-of-the-art methods when handling artificial dropout noise with a remarkable margin of ∼15%, demonstrating its effectiveness and robustness. Case study results demonstrate that when applied to identify biological structural regions on human breast cancer spatial transcriptomic datasets, DenoiseST successfully detected biologically significant immune-related structural regions, which are subsequently validated through Gene Ontology (GO), cell-cell communication, and survival analysis. In conclusion, we expect that DenoiseST is a novel and efficient method for spatial transcriptome analysis, offering unique insights into spatial organization and function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孟筱完成签到 ,获得积分10
4秒前
黑发纳兹发布了新的文献求助10
5秒前
8秒前
清秀的夜雪完成签到,获得积分10
9秒前
郭大侠发布了新的文献求助30
13秒前
竹桃完成签到 ,获得积分10
13秒前
阳光问安完成签到 ,获得积分10
14秒前
爆米花应助LFJ采纳,获得10
16秒前
zhou应助科研通管家采纳,获得30
30秒前
大个应助科研通管家采纳,获得10
30秒前
酷波er应助科研通管家采纳,获得10
30秒前
一大条毛辣丁完成签到,获得积分10
32秒前
33秒前
谢芸发布了新的文献求助10
38秒前
Hello应助黑发纳兹采纳,获得10
44秒前
44秒前
彭于晏应助谢芸采纳,获得10
54秒前
55秒前
55秒前
djiwisksk66应助yuanquaner采纳,获得10
55秒前
Orange应助碧蓝的含羞草采纳,获得10
1分钟前
1分钟前
医学帅哥完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
老实皮卡丘完成签到 ,获得积分10
1分钟前
1分钟前
落羽发布了新的文献求助10
1分钟前
乐乐应助星空采纳,获得10
1分钟前
ZhaoY完成签到,获得积分10
1分钟前
谢芸给谢芸的求助进行了留言
1分钟前
量子星尘发布了新的文献求助10
1分钟前
青阳完成签到,获得积分10
1分钟前
Sandy完成签到,获得积分0
1分钟前
希望天下0贩的0应助500v采纳,获得10
1分钟前
ET完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953370
求助须知:如何正确求助?哪些是违规求助? 3498877
关于积分的说明 11093209
捐赠科研通 3229405
什么是DOI,文献DOI怎么找? 1785359
邀请新用户注册赠送积分活动 869397
科研通“疑难数据库(出版商)”最低求助积分说明 801442