清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel Android malware detection method with API semantics extraction

计算机科学 恶意软件 Android恶意软件 聚类分析 Android(操作系统) 人工智能 恶意软件分析 调用图 图形 机器学习 数据挖掘 程序设计语言 理论计算机科学 操作系统
作者
Hongyu Yang,Youwei Wang,Liang Zhang,Xiang Cheng,Ze Hu
出处
期刊:Computers & Security [Elsevier BV]
卷期号:137: 103651-103651 被引量:13
标识
DOI:10.1016/j.cose.2023.103651
摘要

Due to the continuous evolution of both the Android framework and malware, conventional malware detection methods that have been trained using outdated apps are inadequate in effectively identifying sophisticated evolved malware. To address this issue, in this paper, we propose a novel Android malware detection method with API semantics extraction (AMDASE), it can effectively identify evolved malware instances. Firstly, AMDASE performs API clustering to obtain cluster centers representing API functions before malware detection. We design API sentence to summarize API features and employ natural language processing (NLP) tools to acquire embeddings of API sentence for clustering. With the help of API sentence, it becomes possible to effectively extract the semantics of API contained in features like method name that accurately represents its intended functionality, which also makes the clustering results more accurate. Secondly, AMDASE extracts call graph from each app and optimizes the call graph by removing nodes corresponding to unknown functions, while ensuring the preservation of connectivity between their predecessor and successor nodes. The optimized call graph can extract more robust API contextual information that accurately represents the behavior of each app. Thirdly, in order to maintain resilience against the evolution of Android malware, AMDASE extracts function call pairs from the optimized call graph and abstracts the APIs in function call pairs into cluster centers obtained in API clustering. Finally, feature vectors are generated using one-hot mapping and machine learning classifiers are used for malware detection. We evaluate AMDASE on a dataset of 42,154 benign and 42,450 malicious apps developed over a seven-year period. The experimental results demonstrate that AMDASE greatly outperforms the existing state-of-the-art methods and has a significantly slower aging speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助joycelin采纳,获得10
17秒前
57秒前
阿辉ai做科研完成签到,获得积分10
59秒前
Emperor完成签到 ,获得积分0
59秒前
1分钟前
iwsaml完成签到,获得积分10
1分钟前
Chen发布了新的文献求助10
2分钟前
wenbo完成签到,获得积分0
2分钟前
ivyjianjie完成签到 ,获得积分10
2分钟前
zcbb完成签到,获得积分10
2分钟前
xingsixs完成签到 ,获得积分10
2分钟前
3分钟前
Jack80发布了新的文献求助100
3分钟前
3分钟前
joycelin发布了新的文献求助10
3分钟前
joycelin完成签到,获得积分10
3分钟前
4分钟前
领导范儿应助lysun采纳,获得10
4分钟前
领导范儿应助科研通管家采纳,获得10
5分钟前
SYLH应助Chen采纳,获得10
5分钟前
菁菁发布了新的文献求助10
6分钟前
Sunny完成签到,获得积分10
6分钟前
知行者完成签到 ,获得积分10
6分钟前
通科研完成签到 ,获得积分10
7分钟前
XD824发布了新的文献求助10
7分钟前
OMR123完成签到,获得积分10
7分钟前
xun关闭了xun文献求助
8分钟前
糟糕的翅膀完成签到,获得积分10
9分钟前
小学生的练习簿完成签到,获得积分10
9分钟前
努力努力再努力完成签到,获得积分10
9分钟前
gszy1975完成签到,获得积分10
10分钟前
宇文非笑完成签到 ,获得积分0
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
gwbk完成签到,获得积分10
11分钟前
xun发布了新的文献求助10
11分钟前
11分钟前
我是老大应助xun采纳,获得10
11分钟前
实力不允许完成签到 ,获得积分10
12分钟前
rick3455完成签到 ,获得积分10
12分钟前
12分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784800
求助须知:如何正确求助?哪些是违规求助? 3330056
关于积分的说明 10244242
捐赠科研通 3045404
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800592
科研通“疑难数据库(出版商)”最低求助积分说明 759508