A Comparison of Recurrent and Convolutional Deep Learning Architectures for EEG Seizure Forecasting

脑电图 卷积神经网络 深度学习 计算机科学 人工智能 机器学习 癫痫发作 循环神经网络 分类器(UML) 人工神经网络 模式识别(心理学) 神经科学 心理学
作者
Sina Shafiezadeh,Marco Pozza,Alberto Testolin
标识
DOI:10.5220/0012311800003657
摘要

Many research efforts are being spent to discover predictive markers of seizures, which would allow to build forecasting systems that could mitigate the risk of injuries and clinical complications in epileptic patients.Although electroencephalography (EEG) is the most widely used tool to monitor abnormal brain electrical activity, no commercial devices can reliably anticipate seizures from EEG signal analysis at present.Recent advances in Artificial Intelligence, particularly deep learning algorithms, show promise in enhancing EEG classifier forecasting accuracy by automatically extracting relevant spatio-temporal features from EEG recordings.In this study, we systematically compare the predictive accuracy of two leading deep learning architectures: recurrent models based on Long Short-Term Memory networks (LSTMs) and Convolutional Neural Networks (CNNs).To this aim, we consider a data set of long-term, continuous multi-channel EEG recordings collected from 29 epileptic patients using a standard set of 20 channels.Our results demonstrate the superior performance of deep learning algorithms, which can achieve up to 99% accuracy, sensitivity, and specificity compared to more traditional machine learning approaches, which settle around 75% in all evaluation metrics.Our results also show that giving as input the recordings from all electrodes allows to exploit useful channel correlations to learn more robust predictive features, compared to convolutional models that treat each channel independently.We conclude that deep learning architectures hold promise for enhancing the diagnosis and prediction of epileptic seizures, offering potential benefits to those affected by such invalidating neurological conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
songsongsong应助yy采纳,获得10
3秒前
ding应助程小柒采纳,获得10
5秒前
安鲁完成签到,获得积分10
6秒前
6秒前
6秒前
tzh发布了新的文献求助10
6秒前
8秒前
班小班完成签到,获得积分10
8秒前
9秒前
今后应助勤劳的孤兰采纳,获得30
9秒前
10秒前
11秒前
王二哈发布了新的文献求助10
12秒前
dllllll发布了新的文献求助10
12秒前
情怀应助ZSW采纳,获得10
14秒前
小花排草发布了新的文献求助10
16秒前
16秒前
18秒前
天天向上发布了新的文献求助10
18秒前
18秒前
20秒前
21秒前
Bonnienuit发布了新的文献求助10
22秒前
小花排草完成签到,获得积分10
22秒前
xuan完成签到,获得积分10
23秒前
23秒前
KBRS发布了新的文献求助10
23秒前
24秒前
yhq完成签到,获得积分20
27秒前
27秒前
29秒前
打打应助百灵采纳,获得10
29秒前
欧皇发布了新的文献求助10
29秒前
小秦秦完成签到 ,获得积分10
30秒前
yhq发布了新的文献求助10
30秒前
30秒前
ZSW发布了新的文献求助10
31秒前
CodeCraft应助英勇的无声采纳,获得10
31秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097389
求助须知:如何正确求助?哪些是违规求助? 3635071
关于积分的说明 11522404
捐赠科研通 3345356
什么是DOI,文献DOI怎么找? 1838601
邀请新用户注册赠送积分活动 906166
科研通“疑难数据库(出版商)”最低求助积分说明 823492