Deep Learning Estimating of Epicentral Distance for Earthquake Early Warning Systems

计算机科学 超参数 联营 卷积神经网络 预警系统 波形 深度学习 数据挖掘 人工智能 卷积(计算机科学) 人工神经网络 算法 模式识别(心理学) 机器学习 电信 雷达
作者
Shunta Noda
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society of America]
标识
DOI:10.1785/0120230112
摘要

ABSTRACT To enhance the performance of earthquake early warning (EEW) systems that aim to issue alerts as quickly as possible, it is crucial to improve the accuracy of the epicentral distance Δ estimated via the single-station method. Although the conventional method estimates Δ from the slope of the initial P-wave envelope, this study applies deep learning techniques that can extract a variety of information from the waveform data. By analyzing ∼20,000 records observed at Kyoshin Network stations in Japan, the convolutional neural network (CNN) method achieved higher accuracy than the conventional method. Increasing the data length or the number of iterations of convolution, activation, and pooling layers in the typical CNN model did not significantly improve the accuracy of Δ estimation. An automatic structure search (AutoSS) technique, in which model structure and hyperparameters are randomly varied, was employed to identify models that yield higher accuracy. A typical CNN model was used as the initial structure. The models obtained through this technique showed improved accuracy with increased data length or computational cost. The models that delivered the highest accuracy among those generated using the AutoSS technique outperformed the typical CNN model in terms of accuracy, although their computational costs were comparable. The AutoSS technique offers a significant advantage in that it allows the selection of a model that matches the computational capabilities of the hardware used for its implementation, thereby ensuring optimal computational efficiency. This exhibits that deep learning technologies can be used to improve the performance of EEW systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
李爱国应助山猪吃细糠采纳,获得10
2秒前
4秒前
理理完成签到 ,获得积分10
4秒前
6秒前
Nobody发布了新的文献求助10
6秒前
淀粉肠完成签到 ,获得积分10
6秒前
苹果巧蕊完成签到 ,获得积分10
7秒前
李西瓜完成签到 ,获得积分10
8秒前
欧欧欧导完成签到,获得积分10
8秒前
义气的钥匙发布了新的文献求助100
9秒前
Anyixx发布了新的文献求助10
10秒前
辣椒完成签到,获得积分10
10秒前
11发布了新的文献求助10
10秒前
10秒前
隐形曼青应助chen采纳,获得10
11秒前
songge完成签到,获得积分10
13秒前
发条橙完成签到,获得积分10
13秒前
chaosyw完成签到,获得积分10
15秒前
54189415完成签到,获得积分10
17秒前
从容的灵凡完成签到,获得积分10
17秒前
Anyixx完成签到,获得积分10
17秒前
健康的雁凡完成签到,获得积分10
18秒前
21秒前
李健应助ZSJ采纳,获得10
21秒前
26秒前
chen发布了新的文献求助10
26秒前
爆米花应助橙子采纳,获得10
26秒前
偏偏意气用事完成签到,获得积分10
27秒前
科目三应助smile3013采纳,获得10
28秒前
28秒前
开心最重要的咕噜大王完成签到,获得积分10
29秒前
30秒前
在水一方应助愉快友易采纳,获得10
30秒前
zq1992nl完成签到,获得积分10
31秒前
Bgeelyu完成签到,获得积分10
32秒前
Blaseaka完成签到 ,获得积分10
32秒前
Florenceeeee发布了新的文献求助10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782905
求助须知:如何正确求助?哪些是违规求助? 3328212
关于积分的说明 10235338
捐赠科研通 3043308
什么是DOI,文献DOI怎么找? 1670468
邀请新用户注册赠送积分活动 799719
科研通“疑难数据库(出版商)”最低求助积分说明 759033